Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(38): 44953-44961, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37706500

ABSTRACT

Solar fuel generation through water electrolysis or electrochemical CO2 reduction is thermodynamically limited when it is paired with oxygen evolution reaction (OER). Glycerol electrooxidation reaction (GEOR) is an alternative anodic reaction with lower anodic electrochemical potential that utilizes a renewable coproduct produced during biodiesel synthesis. We show that GEOR on an Au-Pt-Bi ternary metal electrocatalyst in a model alkaline crude glycerol solution can provide significant cell potential reductions even when paired to reduction reactions in seawater and acidic catholytes via a bipolar membrane (BPM). We showed that the combination of GEOR and a BPM separator lowers the total cell potential by 1 V at an electrolysis current of 10.0 mA cm-2 versus an anode performing anode's OER when paired with hydrogen evolution and CO2 reduction cathodes. The observed voltage reduction was steady for periods of up to 80 h, with minimal glycerol crossover observed through the membrane. These results motivate new, high-performance cell designs for photoelectrochemical solar fuel integrated systems based on glycerol electrooxidation.

2.
ACS Appl Mater Interfaces ; 11(21): 19077-19086, 2019 May 29.
Article in English | MEDLINE | ID: mdl-31067020

ABSTRACT

A nanowire photoanode SrTaO2N, a semiconductor suitable for overall water-splitting with a band gap of 2.3 eV, was coated with functional overlayers to yield a core-shell structure while maintaining its one-dimensional morphology. The nanowires were grown hydrothermally on tantalum, and the perovskite-related oxynitride structure was obtained by nitridation. Three functional overlayers have been deposited on the nanowires to enhance the efficiency of photoelectrochemical (PEC) water oxidation. The deposition of TiO x protects the oxynitride from photocorrosion and suppresses charge-carrier recombination at the surface. Ni(OH) x acts a hole-storage layer and decreases the dark-current contribution. This leads to a significantly improved extraction of photogenerated holes to the electrode-electrolyte surface. The photocurrents can be increased by the deposition of a cobalt phosphate (CoPi) layer as a cocatalyst. The heterojunction nanowire photoanode generates a current density of 0.27 mA cm-2 at 1.23 V vs the reversible hydrogen electrode (RHE) under simulated sunlight (AM 1.5G). Simultaneously, the dark-current contribution, a common problem for oxynitride photoanodes grown on metallic substrates, is almost completely minimized. This is the first report of a quaternary oxynitride nanowire photoanode in core-shell geometry containing functional overlayers for synergetic hole extraction and an electrocatalyst.

3.
ACS Appl Mater Interfaces ; 10(50): 43691-43698, 2018 Dec 19.
Article in English | MEDLINE | ID: mdl-30462916

ABSTRACT

Transparent, conductive coatings on porous, three-dimensional materials are often used as the current collector for photoelectrode designs in photoelectrochemical applications. These structures allow for improved light trapping and absorption in chemically synthesized, photoactive overlayers while minimizing parasitic absorption in the current collecting layer. Atomic layer deposition (ALD) is particularly useful for fabricating transparent conducting oxides (TCOs) like Sn-doped In2O3 (ITO) and Al-doped ZnO (AZO) for structured materials because the deposition is specific to exposed surfaces. Unlike line-of-sight deposition methods (evaporation, spray pyrolysis, sputtering), ALD can access the entire complex interface to make a conformal transparent conductive layer. While ITO and AZO can be grown by ALD, they are intrinsically soluble in the acidic and basic environments common for electrochemical applications like water splitting. To take advantage of the unique characteristics of ALD in these applications, it is important to develop strategies for fabricating TCO layers with enhanced chemical stability. Ultrathin coatings of stable materials can be used to protect otherwise unstable electrochemical interfaces while maintaining the desired function. Here, we describe experiments to characterize the chemical and electrochemical stability of ALD-deposited AZO TCO thin films protected by a 10 nm TiO2 overlayer. The addition of a TiO2 protection layer is demonstrated to improve the chemical stability of AZO by orders of magnitude compared to unprotected, yet otherwise identically prepared, AZO films. The electrochemical stability is enhanced accordingly in both acidic and basic environments. We demonstrate that TiO2-protected AZO can be used as a TCO for both the cathodic hydrogen evolution (HER) and anodic water oxidation (OER) half-reactions of electrochemical water splitting in base and for HER in acid when the appropriate electrocatalysts are added. As a result, we show that ALD can be used to synthesize a chemically stable TCO heterostructure, expanding the range of materials and electrochemical environments available for building complex photoelectrode architectures.

4.
ACS Appl Mater Interfaces ; 8(37): 24612-20, 2016 Sep 21.
Article in English | MEDLINE | ID: mdl-27575549

ABSTRACT

Semiconductor-liquid junctions are ubiquitous in photoelectrochemical approaches to artificial photosynthesis. By analogy with the antennae and reaction centers in natural photosynthetic complexes, separating the light-absorbing semiconductor and electrocatalysts can improve catalytic efficiency. A catalytic layer can also impair the photovoltage-generating energetics of the electrode without appropriate microscopic organization of catalytically active area on the surface. Here, we have developed a method using high-speed X-ray phase contrast imaging to study in situ electrolytic bubble growth on semiconductor electrodes fabricated with isolated, micron-scale platinum electrocatalysts. X-rays are a nonperturbative probe by which gas evolution dynamics can be studied under conditions relevant to solar fuels applications. The self-limited growth of a bubble residing on the isolated electrocatalyst was measured by tracking the evolution of the gas-liquid boundary. Contrary to observations on macroscopic electrodes, bubble evolution on isolated, microscopic Pt pads on Si electrodes was insensitive to increasing overpotential. The persistence of the bubble causes mass transport limitations and inhibits the expected Tafel-like kinetics. The observed scaling of catalytic current densities with pad size implies that electrolysis is occurring predominantly on the perimeter of the active area.

SELECTION OF CITATIONS
SEARCH DETAIL
...