Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Invest Ophthalmol Vis Sci ; 61(11): 44, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32991686

ABSTRACT

Purpose: Photoreceptor precursor cells (PRPs) differentiated from human embryonic stem cells can serve as a source for cell replacement therapy aimed at vision restoration in patients suffering from degenerative diseases of the outer retina, such as retinitis pigmentosa and AMD. In this work, we studied the electrophysiologic maturation of PRPs throughout the differentiation process. Methods: Human embryonic stem cells were differentiated into PRPs and whole-cell recordings were performed for electrophysiologic characterization at days 0, 30, 60, and 90 along with quantitative PCR analysis to characterize the expression level of various ion channels, which shape the electrophysiologic response. Finally, to characterize the electrically induced calcium currents, we employed calcium imaging (rhod4) to visualize intracellular calcium dynamics in response to electrical activation. Results: Our results revealed an early and steady presence (approximately 100% of responsive cells) of the delayed potassium rectifier current. In contrast, the percentage of cells exhibiting voltage-gated sodium currents increased with maturation (from 0% to almost 90% of responsive cells at 90 days). Moreover, calcium imaging revealed the presence of voltage-gated calcium currents, which play a major role in vision formation. These results were further supported by quantitative PCR analysis, which revealed a significant and continuous (3- to 50-fold) increase in the expression of various voltage-gated channels concomitantly with the increase in the expression of the photoreceptor marker CRX. Conclusions: These results can shed light on the electrophysiologic maturation of neurons in general and PRP in particular and can form the basis for devising and optimizing cell replacement-based vision restoration strategies.


Subject(s)
Human Embryonic Stem Cells/cytology , Induced Pluripotent Stem Cells/cytology , Patch-Clamp Techniques/methods , Photoreceptor Cells/metabolism , Potassium Channels/metabolism , Retinal Degeneration/therapy , Cell Differentiation , Cells, Cultured , Humans , Membrane Potentials , Photoreceptor Cells/pathology , Retinal Degeneration/diagnosis , Retinal Degeneration/metabolism
2.
PLoS One ; 13(10): e0205719, 2018.
Article in English | MEDLINE | ID: mdl-30332462

ABSTRACT

AIMS: Dilated cardiomyopathy (DCM), a myocardial disorder that can result in progressive heart failure and arrhythmias, is defined by ventricular chamber enlargement and dilatation, and systolic dysfunction. Despite extensive research, the pathological mechanisms of DCM are unclear mainly due to numerous mutations in different gene families resulting in the same outcome-decreased ventricular function. Titin (TTN)-a giant protein, expressed in cardiac and skeletal muscles, is an important part of the sarcomere, and thus TTN mutations are the most common cause of adult DCM. To decipher the basis for the cardiac pathology in titin-mutated patients, we investigated the hypothesis that induced Pluripotent Stem Cell (iPSC)-derived cardiomyocytes (iPSC-CM) generated from patients, recapitulate the disease phenotype. The hypothesis was tested by 3 Aims: (1) Investigate key features of the excitation-contraction-coupling machinery; (2) Investigate the responsiveness to positive inotropic interventions; (3) Investigate the proteome profile of the AuP cardiomyocytes using mass-spectrometry (MS). METHODS AND RESULTS: iPSC were generated from the patients' skin fibroblasts. The major findings were: (1) Sarcomeric organization analysis in mutated iPSC-CM showed defects in assembly and maintenance of sarcomeric structure. (2) Mutated iPSC-CM exhibited diminished inotropic and lusitropic responses to ß-adrenergic stimulation with isoproterenol, increased [Ca2+]out and angiotensin-II. Additionally, mutated iPSC-CM displayed prolonged recovery in response to caffeine. These findings may result from defective or lack of interactions of the sarcomeric components with titin through its kinase domain which is absent in the mutated cells. CONCLUSIONS: These findings show that the mutated cardiomyocytes from DCM patients recapitulate abnormalities of the inherited cardiomyopathies, expressed as blunted inotropic response.


Subject(s)
Cardiomyopathy, Dilated/genetics , Cell Differentiation/genetics , Connectin/genetics , Myocardial Contraction/genetics , Myocytes, Cardiac/pathology , Adult , Aged , Cardiomyopathy, Dilated/pathology , Excitation Contraction Coupling/genetics , Humans , Induced Pluripotent Stem Cells/physiology , Isoproterenol/pharmacology , Male , Mutation , Myocardial Contraction/drug effects , Myocytes, Cardiac/physiology , Proteome
3.
J Cell Mol Med ; 22(2): 913-925, 2018 02.
Article in English | MEDLINE | ID: mdl-29193756

ABSTRACT

Mutations in SCO2 are among the most common causes of COX deficiency, resulting in reduced mitochondrial oxidative ATP production capacity, often leading to hypertrophic cardiomyopathy (HCM). To date, none of the recent pertaining reports provide deep understanding of the SCO2 disease pathophysiology. To investigate the cardiac pathology of the disease, we were the first to generate induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iPSC-CMs) from SCO2-mutated patients. For iPSC generation, we reprogrammed skin fibroblasts from two SCO2 patients and healthy controls. The first patient was a compound heterozygote to the common E140K mutation, and the second was homozygote for the less common G193S mutation. iPSC were differentiated into cardiomyocytes through embryoid body (EB) formation. To test the hypothesis that the SCO2 mutation is associated with mitochondrial abnormalities, and intracellular Ca2+ -overload resulting in functional derangements and arrhythmias, we investigated in SCO2-mutated iPSC-CMs (compared to control cardiomyocytes): (i) the ultrastructural changes; (ii) the inotropic responsiveness to ß-adrenergic stimulation, increased [Ca2+ ]o and angiotensin-II (AT-II); and (iii) the Beat Rate Variability (BRV) characteristics. In support of the hypothesis, we found in the mutated iPSC-CMs major ultrastructural abnormalities and markedly attenuated response to the inotropic interventions and caffeine, as well as delayed afterdepolarizations (DADs) and increased BRV, suggesting impaired SR Ca2+ handling due to attenuated SERCA activity caused by ATP shortage. Our novel results show that iPSC-CMs are useful for investigating the pathophysiological mechanisms underlying the SCO2 mutation syndrome.


Subject(s)
Cardiomyopathy, Hypertrophic/pathology , Carrier Proteins/metabolism , Induced Pluripotent Stem Cells/metabolism , Mitochondrial Proteins/metabolism , Myocytes, Cardiac/metabolism , Action Potentials/drug effects , Adult , Arrhythmias, Cardiac/pathology , Caffeine/pharmacology , Cardiomyopathy, Hypertrophic/physiopathology , Carrier Proteins/genetics , Cell Differentiation , Female , Heart Rate/drug effects , Humans , Induced Pluripotent Stem Cells/ultrastructure , Isoproterenol/pharmacology , Male , Mitochondria/metabolism , Mitochondria/ultrastructure , Mitochondrial Proteins/genetics , Models, Biological , Molecular Chaperones , Mutation/genetics , Myocardial Contraction/drug effects , Myocytes, Cardiac/ultrastructure
4.
Heart Rhythm ; 13(12): 2379-2387, 2016 12.
Article in English | MEDLINE | ID: mdl-27639456

ABSTRACT

BACKGROUND: Previous studies proposed that throughout differentiation of human induced Pluripotent Stem Cell-derived cardiomyocytes (iPSC-CMs), only 3 types of action potentials (APs) exist: nodal-, atrial-, and ventricular-like. OBJECTIVES: To investigate whether there are precisely 3 phenotypes or a continuum exists among them, we tested 2 hypotheses: (1) During culture development a cardiac precursor cell is present that-depending on age-can evolve into the 3 phenotypes. (2) The predominant pattern is early prevalence of a nodal phenotype, transient appearance of an atrial phenotype, evolution to a ventricular phenotype, and persistence of transitional phenotypes. METHODS: To test these hypotheses, we (1) performed fluorescence-activated cell sorting analysis of nodal, atrial, and ventricular markers; (2) recorded APs from 280 7- to 95-day-old iPSC-CMs; and (3) analyzed AP characteristics. RESULTS: The major findings were as follows: (1) fluorescence-activated cell sorting analysis of 30- and 60-day-old cultures showed that an iPSC-CMs population shifts from the nodal to the atrial/ventricular phenotype while including significant transitional populations; (2) the AP population did not consist of 3 phenotypes; (3) culture aging was associated with a shift from nodal to ventricular dominance, with a transient (57-70 days) appearance of the atrial phenotype; and (4) beat rate variability was more prominent in nodal than in ventricular cardiomyocytes, while pacemaker current density increased in older cultures. CONCLUSION: From the onset of development in culture, the iPSC-CMs population includes nodal, atrial, and ventricular APs and a broad spectrum of transitional phenotypes. The most readily distinguishable phenotype is atrial, which appears only transiently yet dominates at 57-70 days of evolution.


Subject(s)
Action Potentials/physiology , Atrial Function/physiology , Atrioventricular Node/physiology , Cell Transdifferentiation/physiology , Induced Pluripotent Stem Cells/physiology , Myocytes, Cardiac/physiology , Ventricular Function/physiology , Cell Differentiation/physiology , Cells, Cultured , Electrophysiological Phenomena , Humans
5.
Can J Cardiol ; 30(11): 1279-87, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25442431

ABSTRACT

Human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) have the capacity to differentiate into any specialized cell type, including cardiomyocytes. Therefore, hESC-derived and hiPSC-derived cardiomyocytes (hESC-CMs and hiPSC-CMs, respectively) offer great potential for cardiac regenerative medicine. Unlike some organs, the heart has a limited ability to regenerate, and dysfunction resulting from significant cardiomyocyte loss under pathophysiological conditions, such as myocardial infarction (MI), can lead to heart failure. Unfortunately, for patients with end-stage heart failure, heart transplantation remains the main alternative, and it is insufficient, mainly because of the limited availability of donor organs. Although left ventricular assist devices are progressively entering clinical practice as a bridge to transplantation and even as an optional therapy, cell replacement therapy presents a plausible alternative to donor organ transplantation. During the past decade, multiple candidate cells were proposed for cardiac regeneration, and their mechanisms of action in the myocardium have been explored. The purpose of this article is to critically review the comprehensive research involving the use of hESCs and hiPSCs in MI models and to discuss current controversies, unresolved issues, challenges, and future directions.


Subject(s)
Embryonic Stem Cells/transplantation , Heart Diseases/therapy , Induced Pluripotent Stem Cells/transplantation , Myocytes, Cardiac/pathology , Stem Cell Transplantation/methods , Cell Differentiation , Heart Diseases/pathology , Humans
6.
Heart Rhythm ; 11(10): 1808-1818, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25052725

ABSTRACT

BACKGROUND: We previously reported that induced pluripotent stem cell-derived cardiomyocytes manifest beat rate variability (BRV) resembling heart rate variability (HRV) in the human sinoatrial node. We now hypothesized the BRV-HRV continuum originates in pacemaker cells. OBJECTIVE: To investigate whether cellular BRV is a source of HRV dynamics, we hypothesized 3 levels of interaction among different cardiomyocyte entities: (1) single pacemaker cells, (2) networks of electrically coupled pacemaker cells, and (3) the in situ sinoatrial node. METHODS: We measured BRV/HRV properties in single pacemaker cells, induced pluripotent stem cell-derived contracting embryoid bodies (EBs), and electrocardiograms from the same individual. RESULTS: Pronounced BRV/HRV was present at all 3 levels. The coefficient of variance of interbeat intervals and Poincaré plot indices SD1 and SD2 for single cells were 20 times greater than those for EBs (P < .05) and the in situ heart (the latter two were similar; P > .05). We also compared BRV magnitude among single cells, small EBs (~5-10 cells), and larger EBs (>10 cells): BRV indices progressively increased with the decrease in the cell number (P < .05). Disrupting intracellular Ca(2+) handling markedly augmented BRV magnitude, revealing a unique bimodal firing pattern, suggesting that intracellular mechanisms contribute to BRV/HRV and the fractal behavior of heart rhythm. CONCLUSION: The decreased BRV magnitude in transitioning from the single cell to the EB suggests that the HRV of in situ hearts originates from the summation and integration of multiple cell-based oscillators. Hence, complex interactions among multiple pacemaker cells and intracellular Ca(2+) handling determine HRV in humans and cardiomyocyte networks.


Subject(s)
Electrocardiography , Heart Rate/physiology , Induced Pluripotent Stem Cells/physiology , Myocytes, Cardiac/physiology , Sinoatrial Node/physiology , Action Potentials/physiology , Adult , Female , Healthy Volunteers , Humans , Middle Aged
7.
Pflugers Arch ; 466(9): 1831-44, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24327207

ABSTRACT

Friedreich ataxia (FRDA), a recessive neurodegenerative disorder commonly associated with hypertrophic cardiomyopathy, is due to GAA repeat expansions within the first intron of the frataxin (FXN) gene encoding the mitochondrial protein involved in iron-sulfur cluster biosynthesis. The triplet codon repeats lead to heterochromatin-mediated gene silencing and loss of frataxin. Nevertheless, inadequacy of existing FRDA-cardiac cellular models limited cardiomyopathy studies. We tested the hypothesis that iron homeostasis deregulation accelerates reduction in energy synthesis dynamics which contributes to impaired cardiac calcium homeostasis and contractile force. Silencing of FXN expressions occurred both in somatic FRDA-skin fibroblasts and two of the induced pluripotent stem cells (iPSC) clones; a sign of stress condition was shown in FRDA-iPSC cardiomyocytes with disorganized mitochondrial network and mitochondrial DNA (mtDNA) depletion; hypertrophic cardiac stress responses were observed by an increase in α-actinin-positive cell sizes revealed by FACS analysis as well as elevation in brain natriuretic peptide (BNP) gene expression; the intracellular iron accumulated in FRDA cardiomyocytes might be due to attenuated negative feedback response of transferring receptor (TSFR) expression and positive feedback response of ferritin (FTH1); energy synthesis dynamics, in terms of ATP production rate, was impaired in FRDA-iPSC cardiomyocytes, which were prone to iron overload condition. Energetic insufficiency determined slower Ca(2+) transients by retarding calcium reuptake to sarcoplasmic reticulum (SR) and impaired the positive inotropic and chronotropic responses to adrenergic stimulation. Our data showed for the first time that FRDA-iPSCs cardiac derivatives represent promising models to study cardiac stress response due to impaired iron homeostasis condition and mitochondrial damages. The cardiomyopathy phenotype was accelerated in an iron-overloaded condition early in calcium homeostasis aspect.


Subject(s)
Cardiomyopathies , Friedreich Ataxia/complications , In Vitro Techniques , Pluripotent Stem Cells , Adult , Cardiomyopathies/etiology , Female , Friedreich Ataxia/genetics , Humans , Iron Overload/complications , Iron-Binding Proteins/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Frataxin
8.
Circulation ; 125(7): 883-93, 2012 Feb 21.
Article in English | MEDLINE | ID: mdl-22261196

ABSTRACT

BACKGROUND: The sinoatrial node is the main impulse-generating tissue in the heart. Atrioventricular conduction block and arrhythmias caused by sinoatrial node dysfunction are clinically important and generally treated with electronic pacemakers. Although an excellent solution, electronic pacemakers incorporate limitations that have stimulated research on biological pacing. To assess the suitability of potential biological pacemakers, we tested the hypothesis that the spontaneous electric activity of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) exhibit beat rate variability and power-law behavior comparable to those of human sinoatrial node. METHODS AND RESULTS: We recorded extracellular electrograms from hESC-CMs and iPSC-CMs under stable conditions for up to 15 days. The beat rate time series of the spontaneous activity were examined in terms of their power spectral density and additional methods derived from nonlinear dynamics. The major findings were that the mean beat rate of hESC-CMs and iPSC-CMs was stable throughout the 15-day follow-up period and was similar in both cell types, that hESC-CMs and iPSC-CMs exhibited intrinsic beat rate variability and fractal behavior, and that isoproterenol increased and carbamylcholine decreased the beating rate in both hESC-CMs and iPSC-CMs. CONCLUSIONS: This is the first study demonstrating that hESC-CMs and iPSC-CMs exhibit beat rate variability and power-law behavior as in humans, thus supporting the potential capability of these cell sources to serve as biological pacemakers. Our ability to generate sinoatrial-compatible spontaneous cardiomyocytes from the patient's own hair (via keratinocyte-derived iPSCs), thus eliminating the critical need for immunosuppression, renders these myocytes an attractive cell source as biological pacemakers.


Subject(s)
Embryonic Stem Cells/cytology , Heart Rate , Induced Pluripotent Stem Cells/cytology , Myocytes, Cardiac/physiology , Carbachol/pharmacology , Heart Rate/drug effects , Humans , Isoproterenol/pharmacology , Sinoatrial Node/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...