Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Radiol Prot ; 44(2)2024 May 10.
Article in English | MEDLINE | ID: mdl-38692267

ABSTRACT

The European as low as reasonably achievable(ALARA) network regularly organises workshops on topical issues in radiation protection (RP). The topic of the 20th workshop was: 'ALARA for interventional radiology (IR) and nuclear medicine (NM)'. The objective was to examine the challenges faced when applying the optimisation principle (ALARA) in IR and NM and to consider how ALARA could be better implemented for patient and staff exposures. This memorandum provides a synthesis of the workshop sessions, and recommendations coming from the working groups discussion. Parallels are drawn with the recommendations arising from the 13th EAN workshop on 'ALARA and the medical sector (2011)' to consider how the optimisation challenges in IR and NM have evolved over the past decade. Current levels of exposure are presented along with operational practice and the challenges and opportunities for improvement, both in monitoring and practice. Whilst RP challenges remain, the application of ALARA appears more established in IR compared with experiences reported in 2011. The application of ALARA to emerging technologies in the NM setting is in need of further development to ensure that RP is considered at all stages in the development process of new radiopharmaceuticals. Besides the obvious technical and operational aspects, the importance of education and training, human factors and broadly the RP 'culture' were deemed fundamental to the success of the application of ALARA and where further emphasis is needed. All concerned parties, medical physics experts (MPEs), radiation protection experts, clinical staff, manufacturers and regulators have a role to play in the application of ALARA and this is discussed in the memorandum. Many of the recommendations from the 13th EAN workshop remain applicable today and overlap with the recommendations arising from the 20th workshop. This should prompt attention given that the use of IR and the development of novel radiopharmaceuticals for NM is only anticipated to increase with time.


Subject(s)
Nuclear Medicine , Radiation Protection , Radiology, Interventional , Humans , Europe , Occupational Exposure/prevention & control
2.
Open Res Eur ; 3: 106, 2023.
Article in English | MEDLINE | ID: mdl-37744279

ABSTRACT

As part of the European RadoNorm research project, citizen science pilot projects focusing on the management of radon risk in houses have been implemented in four countries. This article describes the methodological basis, the development and the results of the French pilot project. Building on an initial review of existing literature, the pilot project aims to frame a 'participatory approach' aligned with the standards and recognized practices of citizen science. Particular attention was given to the management of data and the inclusion of ethical considerations. The focal point of the project was the process of radon building diagnosis which is supposed to be carried out whenever (high) radon concentrations are measured and should be prerequisite to mitigation works. As experience shows, however, this diagnosis is hardly implemented in France. To help remedy this situation, the pilot project recruited citizens already aware about radon from Pays Vesoul Val-de-Saône (East of France) to test an existing online self-evaluation guide for radon diagnosis, report on their operational experience and meet with radon/building experts. This enabled citizens to contribute to improvements in form and content to the guide and to ensure that it would be better fit for purpose. Comparison of the guide with experts' practices offered additional perspectives on what building diagnosis should entail. The pilot project produced rich and high-quality data that will nurture the evolution of the guide. The project demonstrated both the viability and the utility of applying the citizen science approach to radon post-measurement phases, with measurable benefits in bridging knowledge gaps and in encouraging behavioural changes. The results of using a citizen science approach in the field of radon management and research are encouraging, and they far outweigh the challenges involved in the implementation.

3.
J Radiol Prot ; 42(4)2022 11 10.
Article in English | MEDLINE | ID: mdl-36260121

ABSTRACT

The Council Directive 2013/59/Euratom has introduced binding requirements for the management of radon in the workplace in Member States of the European Union. How does it work in practice? In 2021, the European ALARA Network created a working group on ALARA for Radon at Work with the objective of collecting and sharing experiences from the field. A survey was developed to detail each step of the national regulations for the control of radon and to describe case studies showing implementation. This article presents a qualitative analysis of the answers received from seven countries. There are no two similar national regulations and, at each step, different provisions, protocols, techniques etc are applicable or recommended. This diversity contributes to the richness of the results and can inform about interesting and good practices, where 'good' is defined by what is appropriate in the nationally and locally prevailing circumstances. All national regulations follow a graded approach, which is a key component for the implementation of the optimisation (ALARA) principle, yet several potential weak points that may be challenging to ALARA have been identified and are discussed, namely the radon risk assessment, the focus on numerical values, uncertainties in the measurement, how to obtain economically efficient remediation, and the interface with other regulations. Strengthening collaboration between risk prevention and radiation protection actors could help to provide and build expertise on radon management in the workplace, especially when exposure is managed as a planned exposure situation.


Subject(s)
Radiation Protection , Radon , Radon/analysis , Feedback , Workplace , European Union
4.
J Radiol Prot ; 39(3): 766-784, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30865935

ABSTRACT

Reflecting a change in funding strategies for European research projects, and a commitment to the idea of responsible research and innovation in radiological protection (RP), a collective of research institutes and universities have developed a prospective Strategic Research Agenda (SRA) for Social Sciences and Humanities (SSH) in radiological protection. This is the first time such a research agenda has been proposed. This paper identifies six research lines of interest and concern: (1) Effects of social, psychological and economic aspects on RP behaviour; (2) Holistic approaches to the governance of radiological risks; (3) Responsible research and innovation in RP; (4) Stakeholder engagement and participatory processes in RP research, development, policy and practice; (5) Risk communication; and (6) RP cultures. These topics were developed through broad stakeholder consultation, in conjunction with activities carried out in the framework of various projects and initiatives (EU H2020 CONCERT programme, the EU FP7 projects OPERRA, PREPARE and EAGLE, the 2015-2018 RICOMET series of conferences, and the 2014 and 2016 International Symposia on Ethics of Environmental Health); as well as through dialogues with members of the European radiation protection research communities. The six research lines open opportunities to integrate a range of key social and ethical considerations into RP, thereby expanding research opportunities and programmes and fostering collaborative approaches to research and innovation.


Subject(s)
Biomedical Research , Humanities , Radiation Protection , Research Design , Social Sciences , Europe , Humans
5.
J Radiol Prot ; 32(4): 489-524, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23186783

ABSTRACT

The IRPA13 Congress took place from 14-18 May 2012 in Glasgow, Scotland, UK, and was attended by almost 1500 radiological protection professionals. The scientific programme of the Congress was designed to capture a snapshot of the profession's views of the current state of knowledge, and of the challenges seen for the coming years. This paper provides a summary of these results of the Congress in twelve key scientific areas that served as the structural backbone of IRPA13.


Subject(s)
Radiation Protection , Humans , International Agencies
SELECTION OF CITATIONS
SEARCH DETAIL
...