Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; : e2402777, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38781582

ABSTRACT

The ability to detect and image short-wave infrared light has important applications in surveillance, autonomous navigation, and biological imaging. However, the current infrared imaging technologies often pose challenges due to large footprint, large thermal noise and inability to augment infrared and visible imaging. Here, infrared imaging is demonstrated by nonlinear up-conversion to the visible in an ultra-compact, high-quality-factor lithium niobate resonant metasurface. Images with high conversion efficiency and resolution quality are obtained despite the strong nonlocality of the metasurface. The possibility of edge-detection image processing augmented with direct up-conversion imaging for advanced night vision applications is further shown.

2.
Opt Express ; 29(10): 15830-15851, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33985276

ABSTRACT

The smooth transition between stable, Talbot-effect-dominated and modulationally unstable nonlinear optical beam propagation is described as the superposition of oscillating, growing and decaying eigenmodes of the common linearized theory of modulation instability. The saturation of the instability in form of breather maxima is embedded between eigenmode growth and decay. This explains well the changes of beam characteristics when the input intensity increases in experiments on modulation instability and breather excitation in spatial-spatial experimental platforms. An increased accuracy of instability gain measurements, a variety of interesting nonlinear beam scenarios and a more selective and well-directed breather excitation are demonstrated experimentally.

3.
Opt Express ; 19(23): 23188-201, 2011 Nov 07.
Article in English | MEDLINE | ID: mdl-22109198

ABSTRACT

We study experimentally and numerically the dynamics of a recently found topological phase transition for discrete quadratic solitons with linearly coupled SH waves. We find that, although no stationary states are excited in the experimental situation, the generic feature of the phase transition of the SH is preserved. By utilizing simulations of the coupled mode equations we identify the complex processes leading to the phase transition involving spatial focusing and the generation of new frequency components. These distinct signatures of the dynamic phase transition are also demonstrated experimentally.

4.
Phys Rev Lett ; 105(23): 233905, 2010 Dec 03.
Article in English | MEDLINE | ID: mdl-21231464

ABSTRACT

We study two-color parametric nonlinear modes in waveguide arrays with a quadratic nonlinear response. We predict theoretically and observe experimentally a new type of phase transition manifested in an abrupt power-controlled change of the mode structure from unstaggered to staggered, due to the interplay of localization and synchronization in parametrically driven discrete systems.

5.
Opt Lett ; 34(22): 3589-91, 2009 Nov 15.
Article in English | MEDLINE | ID: mdl-19927220

ABSTRACT

We demonstrate experimentally the existence of competing focusing and defocusing nonlinearities in a double-resonant system with quadratic nonlinear response. We use an array of periodically poled coupled optical waveguides and observe inhibition of the nonlinear beam self-action independent on power. This inhibition is demonstrated in both regimes of normal and anomalous beam diffraction.

6.
Opt Express ; 14(12): 5508-16, 2006 Jun 12.
Article in English | MEDLINE | ID: mdl-19516718

ABSTRACT

We report the first observation of discrete quadratic surface solitons in self-focusing and defocusing periodically poled lithium niobate waveguide arrays. By operating on either side of the phase-matching condition and using the cascading nonlinearity, both in-phase and staggered discrete surface solitons were observed. This represents the first experimental demonstration of staggered/gap surface solitons at the interface of a semi-infinite nonlinear lattice. The experimental results were found to be in good agreement with theory.

7.
Opt Lett ; 30(9): 1033-5, 2005 May 01.
Article in English | MEDLINE | ID: mdl-15906994

ABSTRACT

We observe highly localized solitons in periodically poled lithium niobate waveguide arrays close to phase matching for second-harmonic generation. With fundamental and second-harmonic input in one channel the response indicates two distinguishable propagation schemes. Depending on the relative phase between the two input waves, a self-trapped beam emerges, resembling closely either the in- or the out-of-phase quadratic eigenmode of a single waveguide. A stable soliton propagates when the input waves are in phase.

8.
Opt Express ; 13(20): 7794-9, 2005 Oct 03.
Article in English | MEDLINE | ID: mdl-19498807

ABSTRACT

Parametric gain associated with discrete modulational instability due to the second order nonlinearity chi(2)(-2omega;omega,omega) was investigated experimentally in periodically poled lithium niobate arrays of weakly coupled channel waveguides for conditions of both positive and negative phase-mismatch for second harmonic generation.

9.
Opt Lett ; 29(6): 596-8, 2004 Mar 15.
Article in English | MEDLINE | ID: mdl-15035482

ABSTRACT

The advantage for quadratic soliton generation of engineering the quasi-phase-matching period near the input of lithium niobate slab waveguides is demonstrated. This approach allows members of one-dimensional quadratic soliton families with different values of the wave-vector mismatch to be cleanly excited and to be characterized by quantitative intensity-profile measurements of both the fundamental and the second-harmonic soliton components.

SELECTION OF CITATIONS
SEARCH DETAIL
...