Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(5): e0233779, 2020.
Article in English | MEDLINE | ID: mdl-32470059

ABSTRACT

Trehalose metabolism in yeast has been linked to a variety of phenotypes, including heat resistance, desiccation tolerance, carbon-source utilization, and sporulation. The relationships among the several phenotypes of mutants unable to synthesize trehalose are not understood, even though the pathway is highly conserved. One of these phenotypes is that tps1Δ strains cannot reportedly grow on media containing glucose or fructose, even when another carbon source they can use (e.g. galactose) is present. Here we corroborate the recent observation that a small fraction of yeast tps1Δ cells do grow on glucose, unlike the majority of the population. This is not due to a genetic alteration, but instead resembles the persister phenotype documented in many microorganisms and cancer cells undergoing lethal stress. We extend these observations to show that this phenomenon is glucose-specific, as it does not occur on another highly fermented carbon source, fructose. We further demonstrate that this phenomenon appears to be related to mitochondrial complex III function, but unrelated to inorganic phosphate levels in the cell, as had previously been suggested. Finally, we found that this phenomenon is specific to S288C-derived strains, and is the consequence of a variant in the MKT1 gene.


Subject(s)
Glucose/metabolism , Saccharomyces cerevisiae Proteins/physiology , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Electron Transport Complex III/metabolism , Fermentation , Fructose/metabolism , Glucosyltransferases/genetics , Loss of Function Mutation , Trehalose/biosynthesis
2.
Cell ; 173(3): 749-761.e38, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29606352

ABSTRACT

Coexpression of proteins in response to pathway-inducing signals is the founding paradigm of gene regulation. However, it remains unexplored whether the relative abundance of co-regulated proteins requires precise tuning. Here, we present large-scale analyses of protein stoichiometry and corresponding regulatory strategies for 21 pathways and 67-224 operons in divergent bacteria separated by 0.6-2 billion years. Using end-enriched RNA-sequencing (Rend-seq) with single-nucleotide resolution, we found that many bacterial gene clusters encoding conserved pathways have undergone massive divergence in transcript abundance and architectures via remodeling of internal promoters and terminators. Remarkably, these evolutionary changes are compensated post-transcriptionally to maintain preferred stoichiometry of protein synthesis rates. Even more strikingly, in eukaryotic budding yeast, functionally analogous proteins that arose independently from bacterial counterparts also evolved to convergent in-pathway expression. The broad requirement for exact protein stoichiometries despite regulatory divergence provides an unexpected principle for building biological pathways both in nature and for synthetic activities.


Subject(s)
Enzymes/chemistry , Escherichia coli/enzymology , Evolution, Molecular , Protein Isoforms/chemistry , Bacillus subtilis/enzymology , Bacillus subtilis/genetics , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Humans , Multigene Family , Operon , Phylogeny , Promoter Regions, Genetic , RNA, Messenger/metabolism , Ribosomes/chemistry , Sequence Analysis, RNA , Transcriptome
3.
Mol Biol Cell ; 29(8): 897-910, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29444955

ABSTRACT

Metabolic dysregulation leading to sugar-phosphate accumulation is toxic in organisms ranging from bacteria to humans. By comparing two models of sugar-phosphate toxicity in Saccharomyces cerevisiae, we demonstrate that toxicity occurs, at least in part, through multiple, isomer-specific mechanisms, rather than a single general mechanism.


Subject(s)
Fructosephosphates/toxicity , Galactosephosphates/toxicity , Genes, Suppressor , Saccharomyces cerevisiae/metabolism , Culture Media/chemistry , Fructosephosphates/metabolism , Galactosephosphates/metabolism , Gene Expression Regulation, Fungal , Genes, Fungal , Mutation , Saccharomyces cerevisiae/genetics
4.
Cell Host Microbe ; 21(6): 731-741.e10, 2017 Jun 14.
Article in English | MEDLINE | ID: mdl-28618269

ABSTRACT

Obligate intracellular parasites must efficiently invade host cells in order to mature and be transmitted. For the malaria parasite Plasmodium falciparum, invasion of host red blood cells (RBCs) is essential. Here we describe a parasite-specific transcription factor PfAP2-I, belonging to the Apicomplexan AP2 (ApiAP2) family, that is responsible for regulating the expression of genes involved in RBC invasion. Our genome-wide analysis by ChIP-seq shows that PfAP2-I interacts with a specific DNA motif in the promoters of target genes. Although PfAP2-I contains three AP2 DNA-binding domains, only one is required for binding of the target genes during blood stage development. Furthermore, we find that PfAP2-I associates with several chromatin-associated proteins, including the Plasmodium bromodomain protein PfBDP1 and that complex formation is associated with transcriptional regulation. As a key regulator of red blood cell invasion, PfAP2-I represents a potential new antimalarial therapeutic target.


Subject(s)
Erythrocytes/parasitology , Malaria/parasitology , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Transcription Factor AP-2/genetics , Transcription Factor AP-2/metabolism , Antigens, Protozoan , Base Sequence , Chromatin/genetics , Chromatin/metabolism , DNA, Protozoan/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation , Genes, Protozoan , Histones/genetics , Histones/metabolism , Host-Parasite Interactions , Nucleotide Motifs/genetics , Plasmodium , Plasmodium falciparum/genetics , Plasmodium falciparum/pathogenicity , Promoter Regions, Genetic , Recombinant Proteins , Regulatory Elements, Transcriptional
5.
Proc Natl Acad Sci U S A ; 112(19): 6116-21, 2015 May 12.
Article in English | MEDLINE | ID: mdl-25918382

ABSTRACT

Trehalose is a highly stable, nonreducing disaccharide of glucose. A large body of research exists implicating trehalose in a variety of cellular phenomena, notably response to stresses of various kinds. However, in very few cases has the role of trehalose been examined directly in vivo. Here, we describe the development and characterization of a system in Saccharomyces cerevisiae that allows us to manipulate intracellular trehalose concentrations independently of the biosynthetic enzymes and independently of any applied stress. We found that many physiological roles heretofore ascribed to intracellular trehalose, including heat resistance, are not due to the presence of trehalose per se. We also found that many of the metabolic and growth defects associated with mutations in the trehalose biosynthesis pathway are not abolished by providing abundant intracellular trehalose. Instead, we made the observation that intracellular accumulation of trehalose or maltose (another disaccharide of glucose) is growth-inhibitory in a carbon source-specific manner. We conclude that the physiological role of the trehalose pathway is fundamentally metabolic: i.e., more complex than simply the consequence of increased concentrations of the sugar and its attendant physical properties (with the exception of the companion paper where Tapia et al. [Tapia H, et al. (2015) Proc Natl Acad Sci USA, 10.1073/pnas.1506415112] demonstrate a direct role for trehalose in protecting cells against desiccation).


Subject(s)
Monosaccharide Transport Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Symporters/metabolism , Trehalose/metabolism , Biological Transport , Carbon/metabolism , Gene Expression Profiling , Gene Expression Regulation, Fungal , Glucose/metabolism , Hot Temperature , Maltose/metabolism , Metabolomics
6.
Nucleic Acids Res ; 42(13): 8271-84, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24957599

ABSTRACT

We provide the first comprehensive analysis of any transcription factor family in Cryptosporidium, a basal-branching apicomplexan that is the second leading cause of infant diarrhea globally. AP2 domain-containing proteins have evolved to be the major regulatory family in the phylum to the exclusion of canonical regulators. We show that apicomplexan and perkinsid AP2 domains cluster distinctly from other chromalveolate AP2s. Protein-binding specificity assays of C. parvum AP2 domains combined with motif conservation upstream of co-regulated gene clusters allowed the construction of putative AP2 regulons across the in vitro life cycle. Orthologous Apicomplexan AP2 (ApiAP2) expression has been rearranged relative to the malaria parasite P. falciparum, suggesting ApiAP2 network rewiring during evolution. C. hominis orthologs of putative C. parvum ApiAP2 proteins and target genes show greater than average variation. C. parvum AP2 domains display reduced binding diversity relative to P. falciparum, with multiple domains binding the 5'-TGCAT-3', 5'-CACACA-3' and G-box motifs (5'-G[T/C]GGGG-3'). Many overrepresented motifs in C. parvum upstream regions are not AP2 binding motifs. We propose that C. parvum is less reliant on ApiAP2 regulators in part because it utilizes E2F/DP1 transcription factors. C. parvum may provide clues to the ancestral state of apicomplexan transcriptional regulation, pre-AP2 domination.


Subject(s)
Cryptosporidium parvum/genetics , Multigene Family , Transcription Factors/classification , Transcription Factors/metabolism , Alveolata/genetics , Apicomplexa/genetics , Binding Sites , Cryptosporidium parvum/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/classification , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Evolution, Molecular , Gene Regulatory Networks , Nucleotide Motifs , Phylogeny , Plasmodium falciparum/genetics , Protein Structure, Tertiary , Transcription Factors/chemistry , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...