Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 58(20): 5456-5464, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31504014

ABSTRACT

We present a compact and robust distributed-feedback diode laser system architecture for ultracold atom experiments with K41 and Rb87 in a mobile setup operating at the ZARM drop tower in Bremen. Our system withstands DC accelerations of up to 43 g in operation with only minor adjustments over several drop campaigns. Micro-integrated master-oscillator-power-amplifier modules in conjunction with miniaturized, free-space opto-mechanics are integrated on a platform with a volume of 43 L. With compact control and driver electronics, this laser system features output power and spectral characteristics suitable for 2D+ and 3D magneto-optical trapping operation, atomic state preparation, Bragg-diffraction-based atom interferometry, and detection.

2.
Appl Opt ; 56(4): 1246-1252, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-28158141

ABSTRACT

A flexible method to measure the modulation efficiency and residual amplitude modulation, including non-linearities, of phase modulators is presented. The method is based on demodulation of the modulated optical field in the optical domain by means of a heterodyne interferometer and subsequent analysis of the I&Q quadrature components of the corresponding RF beat note signal. As an example, we determine the phase modulation efficiency and residual amplitude modulation for both the TE and TM modes of a GaAs chip-based phase modulator at the wavelength of 1064 nm. From the results of these measurements, we estimate the linear and quadratic electro-optic coefficients for a P-p-n-N GaAs/AlGaAs double heterostructure.

3.
Appl Opt ; 54(17): 5332-8, 2015 Jun 10.
Article in English | MEDLINE | ID: mdl-26192832

ABSTRACT

We present micro-integrated diode laser modules operating at wavelengths of 767 and 780 nm for cold quantum gas experiments on potassium and rubidium. The master-oscillator-power-amplifier concept provides both narrow linewidth emission and high optical output power. With a linewidth (10 µs) below 1 MHz and an output power of up to 3 W, these modules are specifically suited for quantum optics experiments and feature the robustness required for operation at a drop tower or on-board a sounding rocket. This technology development hence paves the way toward precision quantum optics experiments in space.

4.
Appl Opt ; 53(30): 7138-43, 2014 Oct 20.
Article in English | MEDLINE | ID: mdl-25402804

ABSTRACT

We present a simple method to accurately measure the frequency noise power spectrum of lasers. It relies on creating the beat note between two lasers, capturing the corresponding signal in the time domain, and appropriately postprocessing the data to derive the frequency noise power spectrum. In contrast to methods already established, it does not require stabilization of the laser to an optical reference, i.e., a second laser, to an optical cavity or to an atomic transition. It further omits a frequency discriminator and hence avoids bandwidth limitation and nonlinearity effects common to high-resolution frequency discriminators.

5.
Opt Express ; 22(7): 7790-8, 2014 Apr 07.
Article in English | MEDLINE | ID: mdl-24718155

ABSTRACT

We present a micro-integrated, extended cavity diode laser module for space-based experiments on potassium Bose-Einstein condensates and atom interferometry. The module emits at the wavelength of the potassium D2-line at 766.7 nm and provides 27.5 GHz of continuous tunability. It features sub-100 kHz short term (100 µs) emission linewidth. To qualify the extended cavity diode laser module for quantum optics experiments in space, vibration tests (8.1 g(RMS) and 21.4 g(RMS)) and mechanical shock tests (1500 g) were carried out. No degradation of the electro-optical performance was observed.

6.
Opt Express ; 19(8): 7077-83, 2011 Apr 11.
Article in English | MEDLINE | ID: mdl-21503020

ABSTRACT

We demonstrate a compact, narrow-linewidth, high-power, micro-integrated semiconductor-based master oscillator power amplifier laser module which is implemented on a footprint of 50 x 10 mm(2). A micro-isolator between the oscillator and the amplifier suppresses optical feedback. The oscillator is a distributed Bragg reflector laser optimized for narrow-linewidth operation and the amplifier consists of a ridge waveguide entry and a tapered amplifier section. The module features stable single-mode operation with a FWHM linewidth of only 100 kHz and an intrinsic linewidth as small as 3.6 kHz for an output power beyond 1 W.

7.
Appl Opt ; 48(4): 704-7, 2009 Feb 01.
Article in English | MEDLINE | ID: mdl-19183596

ABSTRACT

We present a simple technique to actively stabilize the optical path length in an optical fiber. A part of the fiber is coated with a thin, electrically conductive layer, which acts as a heater. The optical path length is thus modified by temperature-dependent changes in the refractive index and the mechanical length of the fiber. For the first time, we measure the dynamic response of the optical path length to the periodic changes of temperature and find it to be in agreement with our former theoretical prediction. The fiber's response to the temperature changes is determined by the speed of sound in quartz rather than by slow thermal diffusion. Making use of this fact, we succeeded in actively stabilizing the optical path length with a closed-loop bandwidth of 3.8 kHz.


Subject(s)
Acoustics/instrumentation , Computer-Aided Design , Optical Fibers , Equipment Design , Equipment Failure Analysis , Light , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL
...