Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Chem Inf Model ; 60(11): 5457-5474, 2020 11 23.
Article in English | MEDLINE | ID: mdl-32813975

ABSTRACT

Accurate ranking of compounds with regards to their binding affinity to a protein using computational methods is of great interest to pharmaceutical research. Physics-based free energy calculations are regarded as the most rigorous way to estimate binding affinity. In recent years, many retrospective studies carried out both in academia and industry have demonstrated its potential. Here, we present the results of large-scale prospective application of the FEP+ method in active drug discovery projects in an industry setting at Merck KGaA, Darmstadt, Germany. We compare these prospective data to results obtained on a new diverse, public benchmark of eight pharmaceutically relevant targets. Our results offer insights into the challenges faced when using free energy calculations in real-life drug discovery projects and identify limitations that could be tackled by future method development. The new public data set we provide to the community can support further method development and comparative benchmarking of free energy calculations.


Subject(s)
Drug Discovery , Ligands , Prospective Studies , Retrospective Studies , Thermodynamics
2.
Elife ; 52016 12 09.
Article in English | MEDLINE | ID: mdl-27935476

ABSTRACT

Mediator-associated kinases CDK8/19 are context-dependent drivers or suppressors of tumorigenesis. Their inhibition is predicted to have pleiotropic effects, but it is unclear whether this will impact on the clinical utility of CDK8/19 inhibitors. We discovered two series of potent chemical probes with high selectivity for CDK8/19. Despite pharmacodynamic evidence for robust on-target activity, the compounds exhibited modest, though significant, efficacy against human tumor lines and patient-derived xenografts. Altered gene expression was consistent with CDK8/19 inhibition, including profiles associated with super-enhancers, immune and inflammatory responses and stem cell function. In a mouse model expressing oncogenic beta-catenin, treatment shifted cells within hyperplastic intestinal crypts from a stem cell to a transit amplifying phenotype. In two species, neither probe was tolerated at therapeutically-relevant exposures. The complex nature of the toxicity observed with two structurally-differentiated chemical series is consistent with on-target effects posing significant challenges to the clinical development of CDK8/19 inhibitors.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Antineoplastic Agents/administration & dosage , Cyclin-Dependent Kinase 8/antagonists & inhibitors , Cyclin-Dependent Kinases/antagonists & inhibitors , Mediator Complex/antagonists & inhibitors , Protein Kinase Inhibitors/administration & dosage , Animals , Anti-Inflammatory Agents/adverse effects , Anti-Inflammatory Agents/toxicity , Antineoplastic Agents/adverse effects , Antineoplastic Agents/toxicity , Disease Models, Animal , Heterografts , Humans , Hyperplasia/drug therapy , Mice , Neoplasms/drug therapy , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/toxicity , Treatment Outcome
3.
J Med Chem ; 59(20): 9337-9349, 2016 Oct 27.
Article in English | MEDLINE | ID: mdl-27490956

ABSTRACT

The mediator complex-associated cyclin dependent kinase CDK8 regulates ß-catenin-dependent transcription following activation of WNT signaling. Multiple lines of evidence suggest CDK8 may act as an oncogene in the development of colorectal cancer. Here we describe the successful optimization of an imidazo-thiadiazole series of CDK8 inhibitors that was identified in a high-throughput screening campaign and further progressed by structure-based design. In several optimization cycles, we improved the microsomal stability, potency, and kinase selectivity. The initial imidazo-thiadiazole scaffold was replaced by a 3-methyl-1H-pyrazolo[3,4-b]-pyridine which resulted in compound 25 (MSC2530818) that displayed excellent kinase selectivity, biochemical and cellular potency, microsomal stability, and is orally bioavailable. Furthermore, we demonstrated modulation of phospho-STAT1, a pharmacodynamic biomarker of CDK8 activity, and tumor growth inhibition in an APC mutant SW620 human colorectal carcinoma xenograft model after oral administration. Compound 25 demonstrated suitable potency and selectivity to progress into preclinical in vivo efficacy and safety studies.


Subject(s)
Antineoplastic Agents/pharmacology , Cyclin-Dependent Kinase 8/antagonists & inhibitors , Drug Discovery , High-Throughput Screening Assays , Imidazoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Thiadiazoles/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Biomarkers, Tumor/antagonists & inhibitors , Biomarkers, Tumor/metabolism , Cell Proliferation/drug effects , Cyclin-Dependent Kinase 8/metabolism , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , Imidazoles/chemical synthesis , Imidazoles/chemistry , Mice , Mice, Nude , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Thiadiazoles/chemical synthesis , Thiadiazoles/chemistry
4.
ACS Med Chem Lett ; 7(6): 573-8, 2016 Jun 09.
Article in English | MEDLINE | ID: mdl-27326329

ABSTRACT

We demonstrate a designed scaffold-hop approach to the discovery of 2,8-disubstituted-1,6-naphthyridine- and 4,6-disubstituted-isoquinoline-based dual CDK8/19 ligands. Optimized compounds in both series exhibited rapid aldehyde oxidase-mediated metabolism, which could be abrogated by introduction of an amino substituent at C5 of the 1,6-naphthyridine scaffold or at C1 of the isoquinoline scaffold. Compounds 51 and 59 were progressed to in vivo pharmacokinetic studies, and 51 also demonstrated sustained inhibition of STAT1(SER727) phosphorylation, a biomarker of CDK8 inhibition, in an SW620 colorectal carcinoma human tumor xenograft model following oral dosing.

5.
Bioorg Med Chem Lett ; 26(5): 1443-51, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26852363

ABSTRACT

Here we describe the discovery and optimization of 3-benzylindazoles as potent and selective inhibitors of CDK8, also modulating CDK19, discovered from a high-throughput screening (HTS) campaign sampling the Merck compound collection. The primary hits with strong HSP90 affinity were subsequently optimized to potent and selective CDK8 inhibitors which demonstrate inhibition of WNT pathway activity in cell-based assays. X-ray crystallographic data demonstrated that 3-benzylindazoles occupy the ATP binding site of CDK8 and adopt a Type I binding mode. Medicinal chemistry optimization successfully led to improved potency, physicochemical properties and oral pharmacokinetics. Modulation of phospho-STAT1, a pharmacodynamic biomarker of CDK8, was demonstrated in an APC-mutant SW620 human colorectal carcinoma xenograft model following oral administration.


Subject(s)
Colorectal Neoplasms/drug therapy , Cyclin-Dependent Kinase 8/antagonists & inhibitors , Drug Discovery , HSP90 Heat-Shock Proteins/metabolism , Indazoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Animals , Colorectal Neoplasms/metabolism , Crystallography, X-Ray , Cyclin-Dependent Kinase 8/metabolism , Dose-Response Relationship, Drug , Humans , Indazoles/administration & dosage , Indazoles/chemistry , Mice , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Rats , Structure-Activity Relationship , Substrate Specificity
6.
J Med Chem ; 59(3): 1078-101, 2016 Feb 11.
Article in English | MEDLINE | ID: mdl-26796641

ABSTRACT

The Mediator complex-associated cyclin-dependent kinase CDK8 has been implicated in human disease, particularly in colorectal cancer where it has been reported as a putative oncogene. Here we report the discovery of 109 (CCT251921), a potent, selective, and orally bioavailable inhibitor of CDK8 with equipotent affinity for CDK19. We describe a structure-based design approach leading to the discovery of a 3,4,5-trisubstituted-2-aminopyridine series and present the application of physicochemical property analyses to successfully reduce in vivo metabolic clearance, minimize transporter-mediated biliary elimination while maintaining acceptable aqueous solubility. Compound 109 affords the optimal compromise of in vitro biochemical, pharmacokinetic, and physicochemical properties and is suitable for progression to animal models of cancer.


Subject(s)
Aminopyridines/pharmacology , Cyclin-Dependent Kinase 8/antagonists & inhibitors , Cyclin-Dependent Kinases/antagonists & inhibitors , Drug Discovery , Small Molecule Libraries/pharmacology , Administration, Oral , Aminopyridines/administration & dosage , Aminopyridines/chemistry , Animals , Biological Availability , Caco-2 Cells , Cyclin-Dependent Kinase 8/metabolism , Cyclin-Dependent Kinases/metabolism , Dogs , Dose-Response Relationship, Drug , Female , Humans , Male , Mice , Models, Molecular , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Rats , Rats, Wistar , Small Molecule Libraries/administration & dosage , Small Molecule Libraries/chemistry , Solubility , Structure-Activity Relationship , Xenograft Model Antitumor Assays
7.
Nat Chem Biol ; 11(12): 973-980, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26502155

ABSTRACT

There is unmet need for chemical tools to explore the role of the Mediator complex in human pathologies ranging from cancer to cardiovascular disease. Here we determine that CCT251545, a small-molecule inhibitor of the WNT pathway discovered through cell-based screening, is a potent and selective chemical probe for the human Mediator complex-associated protein kinases CDK8 and CDK19 with >100-fold selectivity over 291 other kinases. X-ray crystallography demonstrates a type 1 binding mode involving insertion of the CDK8 C terminus into the ligand binding site. In contrast to type II inhibitors of CDK8 and CDK19, CCT251545 displays potent cell-based activity. We show that CCT251545 and close analogs alter WNT pathway-regulated gene expression and other on-target effects of modulating CDK8 and CDK19, including expression of genes regulated by STAT1. Consistent with this, we find that phosphorylation of STAT1(SER727) is a biomarker of CDK8 kinase activity in vitro and in vivo. Finally, we demonstrate in vivo activity of CCT251545 in WNT-dependent tumors.


Subject(s)
Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Cyclin-Dependent Kinase 8/antagonists & inhibitors , Cyclin-Dependent Kinase 8/metabolism , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/metabolism , Molecular Probes/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Spiro Compounds/pharmacology , Cell Line, Tumor , Cyclin-Dependent Kinase 8/genetics , Cyclin-Dependent Kinases/genetics , Humans , Models, Molecular , Molecular Probes/chemistry , Molecular Structure , Protein Kinase Inhibitors/chemistry , Pyridines/chemistry , Spiro Compounds/chemistry
8.
J Med Chem ; 58(4): 1717-35, 2015 Feb 26.
Article in English | MEDLINE | ID: mdl-25680029

ABSTRACT

WNT signaling is frequently deregulated in malignancy, particularly in colon cancer, and plays a key role in the generation and maintenance of cancer stem cells. We report the discovery and optimization of a 3,4,5-trisubstituted pyridine 9 using a high-throughput cell-based reporter assay of WNT pathway activity. We demonstrate a twisted conformation about the pyridine-piperidine bond of 9 by small-molecule X-ray crystallography. Medicinal chemistry optimization to maintain this twisted conformation, cognisant of physicochemical properties likely to maintain good cell permeability, led to 74 (CCT251545), a potent small-molecule inhibitor of WNT signaling with good oral pharmacokinetics. We demonstrate inhibition of WNT pathway activity in a solid human tumor xenograft model with evidence for tumor growth inhibition following oral dosing. This work provides a successful example of hypothesis-driven medicinal chemistry optimization from a singleton hit against a cell-based pathway assay without knowledge of the biochemical target.


Subject(s)
Antineoplastic Agents/pharmacology , Colorectal Neoplasms/drug therapy , Drug Evaluation, Preclinical/methods , Luciferases/antagonists & inhibitors , Pyridines/pharmacology , Small Molecule Libraries/pharmacology , Spiro Compounds/pharmacology , Wnt Signaling Pathway/drug effects , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Biological Assay/methods , Biological Availability , Cell Line, Tumor , Cell Proliferation/drug effects , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Crystallography, X-Ray , Disease Models, Animal , Dose-Response Relationship, Drug , Humans , Luciferases/metabolism , Mice , Models, Molecular , Molecular Structure , Pyridines/administration & dosage , Pyridines/chemistry , Small Molecule Libraries/administration & dosage , Small Molecule Libraries/chemistry , Spiro Compounds/administration & dosage , Spiro Compounds/chemistry , Structure-Activity Relationship , Xenograft Model Antitumor Assays
9.
Bioorg Med Chem Lett ; 20(5): 1491-5, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20149654

ABSTRACT

Here we describe the discovery and optimization of hexahydro-2H-pyrano[3,2-c]quinolines (HHPQs) as potent and selective inhibitors of the mitotic kinesin-5 originally found during a high-throughput screening (HTS) campaign sampling our in-house compound collection. The compounds optimized subsequently and characterized herein were potently inhibiting the ATPase activity of Kinesin-5 and also exhibited consistent cellular activity, in that cells arrested in mitosis and apoptosis induction could be observed. X-ray crystallographic data demonstrated that these inhibitors bind in an allosteric pocket of Kinesin-5 distant from the nucleotide and microtubule binding sites. The selected clinical candidate EMD 534085 caused strong growth inhibition in human tumor xenograft models using Colo 205 colon carcinoma cells at doses below 30mg/kg administered twice weekly without showing severe toxicity as determined by loss of body weight.


Subject(s)
Antineoplastic Agents/chemistry , Enzyme Inhibitors/chemistry , Kinesins/antagonists & inhibitors , Mitosis , Quinolines/chemistry , Allosteric Regulation , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Binding Sites , Cell Line, Tumor , Crystallography, X-Ray , Drug Discovery , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , High-Throughput Screening Assays , Humans , Kinesins/metabolism , Mice , Quinolines/chemical synthesis , Quinolines/pharmacology , Structure-Activity Relationship , Xenograft Model Antitumor Assays
10.
Bioorg Med Chem ; 12(18): 4843-52, 2004 Sep 15.
Article in English | MEDLINE | ID: mdl-15336263

ABSTRACT

The dual serotonin (5-HT) re-uptake inhibitor and 5-HT(1A) receptor agonist vilazodone was found to increase central serotonin levels in rat brain. In the course of structural modifications of vilazodone 3-[4-[4-(2-oxo-2H-1-benzopyran-6-yl)-1-piperazinyl]-butyl]-1H-indole-5-carbonitrile 8i and its fluorine analogue 6-[4-[4-(5-fluor-3-indolyl)-butyl]-1-piperazinyl]-2H-1-benzopyran-2-one have been identified. These unsubstituted chromenones are equally potent at the 5-HT(1A) receptor and 5-HT transporter. The implementation of nitrogen functionalities in position 3 of the chromenones resulted in compounds acting as agonists at the 5-HT(1A) receptor and as 5-HT re-uptake inhibitors like vilazodone. Ex vivo 5-HT re-uptake inhibition and in vitro 5-HT agonism were determined in the PCA- and GTPgammaS-assay, respectively. The potential of these chromenones to increase central 5-HT levels was measured in microdialysis studies and especially the derivatives 3-[4-[4-(3-amino-2-oxo-2H-chromen-6-yl)-piperazin-1-yl]-butyl]-1H-indole-5-carbonitrile 8f, ethyl (6-[4-[4-(5-cyano-1H-indol-3-yl)-butyl]-piperazin-1-yl]-2-oxo-2H-chromen-3-yl)-carbamate 8h and N-(6-[4-[4-(5-cyano-1H-indol-3-yl)-butyl]-piperazin-1-yl]-2-oxo-2H-chromen-3-yl)-acetamide 8k give rise to rapid development of increased serotonin levels in rat brain cortex, lasting longer than 3h.


Subject(s)
Benzofurans/pharmacology , Indoles/pharmacology , Piperazines/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacology , Serotonin 5-HT1 Receptor Agonists , Serotonin Receptor Agonists/pharmacology , Animals , Benzofurans/chemistry , Benzofurans/metabolism , Benzopyrans/chemistry , Benzopyrans/metabolism , Benzopyrans/pharmacology , Butylamines/chemistry , Butylamines/metabolism , Butylamines/pharmacology , Drug Combinations , Indoles/chemistry , Indoles/metabolism , Male , Molecular Structure , Piperazines/chemistry , Piperazines/metabolism , Protein Binding/drug effects , Protein Binding/physiology , Rats , Receptor, Serotonin, 5-HT1A/metabolism , Serotonin Receptor Agonists/chemistry , Serotonin Receptor Agonists/metabolism , Selective Serotonin Reuptake Inhibitors/chemistry , Selective Serotonin Reuptake Inhibitors/metabolism , Vilazodone Hydrochloride
SELECTION OF CITATIONS
SEARCH DETAIL
...