Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
1.
Environ Microbiol Rep ; 16(3): e13261, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38747071

ABSTRACT

In this study, we investigated faecal specimens from legally hunted and road-killed red foxes, raccoons, raccoon dogs, badgers and martens in Germany for parasites and selected zoonotic bacteria. We found that Baylisascaris procyonis, a zoonotic parasite of raccoons, had spread to northeastern Germany, an area previously presumed to be free of this parasite. We detected various pathogenic bacterial species from the genera Listeria, Clostridium (including baratii), Yersinia and Salmonella, which were analysed using whole-genome sequencing. One isolate of Yersinia enterocolitica contained a virulence plasmid. The Salmonella Cholerasuis isolate encoded an aminoglycoside resistance gene and a parC point mutation, conferring resistance to ciprofloxacin. We also found tetracycline resistance genes in Paeniclostridium sordellii and Clostridium baratii. Phylogenetic analyses revealed that the isolates were polyclonal, indicating the absence of specific wildlife-adapted clones. Predators, which scavenge from various sources including human settlements, acquire and spread zoonotic pathogens. Therefore, their role should not be overlooked in the One Health context.


Subject(s)
Bacteria , Feces , Foxes , Phylogeny , Raccoons , Animals , Germany , Foxes/microbiology , Foxes/parasitology , Raccoons/microbiology , Raccoons/parasitology , Feces/microbiology , Feces/parasitology , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification , Zoonoses/microbiology , Zoonoses/parasitology , Whole Genome Sequencing
2.
Microbiol Spectr ; 12(5): e0260623, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38530058

ABSTRACT

Escherichia coli intestinal infection pathotypes are characterized by distinct adhesion patterns, including the recently described clumpy adhesion phenotype. Here, we identify and characterize the genetic factors contributing to the clumpy adhesion of E. coli strain 4972. In this strain, the transcriptome and proteome of adhered bacteria were found to be distinct from planktonic bacteria in the supernatant. A total of 622 genes in the transcriptome were differentially expressed in bacteria present in clumps relative to the planktonic bacteria. Seven genes targeted for disruption had variable distribution in different pathotypes and nonpathogenic E. coli, with the pilV and spnT genes being the least frequent or absent from most groups. Deletion (Δ) of five differentially expressed genes, flgH, ffp, pilV, spnT, and yggT, affected motility, adhesion, or antibiotic stress. ΔflgH exhibited 80% decrease and ΔyggT depicted 184% increase in adhesion, and upon complementation, adhesion was significantly reduced to 13%. ΔflgH lost motility and was regenerated when complemented, whereas Δffp had significantly increased motility, and reintroduction of the same gene reduced it to the wild-type level. The clumps produced by Δffp and ΔspnT were more resistant and protected the bacteria, with ΔspnT showing the best clump formation in terms of ampicillin stress protection. ΔyggT had the lowest tolerance to gentamicin, where the antibiotic stress completely eliminated the bacteria. Overall, we were able to investigate the influence of clump formation on cell surface adhesion and antimicrobial tolerance, with the contribution of several factors crucial to clump formation on susceptibility to the selected antibiotics. IMPORTANCE: The study explores a biofilm-like clumpy adhesion phenotype in Escherichia coli, along with various factors and implications for antibiotic susceptibility. The phenotype permitted the bacteria to survive the onslaught of high antibiotic concentrations. Profiles of the transcriptome and proteome allowed the differentiation between adhered bacteria in clumps and planktonic bacteria in the supernatant. The deletion mutants of genes differentially expressed between adhered and planktonic bacteria, i.e., flgH, ffp, pilV, spnT, and yggT, and respective complementations in trans cemented their roles in multiple capacities. ffp, an uncharacterized gene, is involved in motility and resistance to ampicillin in a clumpy state. The work also affirms for the first time the role of the yggT gene in adhesion and its involvement in susceptibility against another aminoglycoside antibiotic, i.e., gentamicin. Overall, the study contributes to the mechanisms of biofilm-like adhesion phenotype and understanding of the antimicrobial therapy failures and infections of E. coli.


Subject(s)
Anti-Bacterial Agents , Bacterial Adhesion , Escherichia coli Proteins , Escherichia coli , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/metabolism , Bacterial Adhesion/genetics , Humans , Anti-Bacterial Agents/pharmacology , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Microbial Sensitivity Tests , Escherichia coli Infections/microbiology , Biofilms/drug effects , Biofilms/growth & development , Drug Resistance, Bacterial/genetics , Transcriptome
3.
Heliyon ; 10(1): e23268, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38163163

ABSTRACT

Leptospirosis is a worldwide zoonosis caused by pathogenic Leptospira spp. While the latter are reported from various mammal hosts such as humans, dogs, or rodents, less is known about their presence in wild carnivores. We therefore investigated the presence of Leptospira spp. in foxes, raccoons, badgers, raccoon dogs, and martens in North-Eastern Germany. Kidney, urine, and blood specimens obtained from legally hunted or road-killed animals were tested by real-time PCR and by serogroup specific antibody detection for the presence of Leptospira spp. Additionally, kidney and urine specimens were tested by real-time PCR for the presence of Brucella spp. and Francisella tularensis, with all being negative for these two zoonotic pathogens. Leptospira spp. were detected by PCR in 12.6 % (n = 21/166) and serologically in 26.2 % (n = 53/202) of tissue and serum samples, respectively. Antibodies to 15 different serogroups were identified with Javanica (n = 25) and Bataviae (n = 12) being predominant. A high sero-prevalence of 34.0 % and 18.6 % in foxes and raccoons, respectively, and the presence of ST17 associated with human and animal leptospirosis indicates a reservoir and the zoonotic potential of these wild animals.

4.
Foodborne Pathog Dis ; 21(1): 52-60, 2024 01.
Article in English | MEDLINE | ID: mdl-37819687

ABSTRACT

Biofilm-associated foodborne Salmonella infections in poultry have become increasingly challenging for veterinarians, particularly in developing countries, and warrant thorough investigation. We assessed the biofilm-forming tendency of poultry isolates of Salmonella enterica, namely Salmonella Typhimurium (n = 23), Salmonella Infantis (n = 28), and Salmonella Heidelberg (n = 18), in nutrient-rich Rappaport-Vassiliadis Soya (RVS) peptone broth and nutrient-deficient diluted Tryptone Soya Broth (TSB). Seven of the tested isolates exhibited moderate biofilm formation in diluted TSB, whereas two showed such formation in RVS. In addition, the Congo red agar assay revealed curli and cellulose production in seven isolates. Fourteen specific biofilm-associated genes were analyzed identifying sdiA and seqA to be the most prevalent (100%), and glyA the least prevalent (69.5%). The prevalence of the genes bcsA and csgA was significantly lower in moderate and weak biofilm formers, respectively, as compared with nonbiofilm formers in RVS peptone broth. Furthermore, the compounds carvacrol and 2-aminobenzimidazole (2-ABI) effectively inhibited biofilm formation by Salmonella serovars in RVS peptone and TSB media, respectively. Whereas the antibiofilm activity of 2-ABI against Salmonella has not been reported previously, we determined its most effective concentration at 1.5 mM among tested antibiofilm treatments. These findings indicate that Salmonella strains prevalent in poultry farms have the potential to form biofilms, and the tested compounds should be further explored as supportive or alternative antimicrobials.


Subject(s)
Salmonella enterica , Animals , Salmonella enterica/genetics , Peptones/pharmacology , Biofilms , Salmonella typhimurium/genetics , Poultry
5.
World J Gastroenterol ; 29(42): 5728-5750, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38075846

ABSTRACT

BACKGROUND: Defective neutrophil regulation in inflammatory bowel disease (IBD) is thought to play an important role in the onset or manifestation of IBD, as it could lead to damage of the intestinal mucosal barrier by the infiltration of neutrophils in the inflamed mucosa and the accumulation of pathogens. Like neutrophils in the context of innate immune responses, immunoglobulin A (IgA) as an acquired immune response partakes in the defense of the intestinal epithelium. Under normal conditions, IgA contributes to the elimination of microbes, but in connection with the loss of tolerance to chitinase 3-like 1 (CHI3L1) in IBD, IgA could participate in CHI3L1-mediated improved adhesion and invasion of potentially pathogenic microorganisms. The tolerance brake to CHI3L1 and the occurrence of IgA autoantibodies to this particular target, the exact role and underlying mechanisms of CHI3L1 in the pathogenesis of IBD are still unclear. AIM: To determine the predictive potential of Ig subtypes of a novel serological marker, anti-CHI3L1 autoantibodies (aCHI3L1) in determining the disease phenotype, therapeutic strategy and long-term disease course in a prospective referral cohort of adult IBD patients. METHODS: Sera of 257 Crohn's disease (CD) and 180 ulcerative colitis (UC) patients from a tertiary IBD referral center of Hungary (Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen) were assayed for IgG, IgA, and secretory IgA (sIgA) type aCHI3L1 by enzyme-linked immunosorbent assay using recombinant CHI3L1, along with 86 healthy controls (HCONT). RESULTS: The IgA type was more prevalent in CD than in UC (29.2% vs 11.1%) or HCONT (2.83%; P < 0.0001 for both). However, sIgA subtype aCHI3L1 positivity was higher in both CD and UC patients than in HCONT (39.3% and 32.8% vs 4.65%, respectively; P < 0.0001). The presence of both IgA and sIgA aCHI3L1 antibodies was associated with colonic involvement (P < 0.0001 and P = 0.038, respectively) in patients with CD. Complicated disease behavior at sample procurement was associated with aCHI3L1 sIgA positivity (57.1% vs 36.0%, P = 0.009). IgA type aCH3L1 was more prevalent in patients with frequent relapse during the disease course in the CD group (46.9% vs 25.7%, P = 0.005). In a group of patients with concomitant presence of pure inflammatory luminal disease and colon involvement at the time of diagnosis, positivity for IgA or sIgA type aCH3L1 predicted faster progression towards a complicated disease course in time-dependent models. This association disappeared after merging subgroups of different disease locations. CONCLUSION: CHI3L1 is a novel neutrophil autoantigenic target in IBD. The consideration of antibody classes along with location-based prediction may transform the future of serology in IBD.


Subject(s)
Colitis, Ulcerative , Crohn Disease , Inflammatory Bowel Diseases , Adult , Humans , Autoantibodies , Prospective Studies , Colitis, Ulcerative/diagnosis , Immunoglobulin A , Immunoglobulin A, Secretory , Biomarkers
6.
BMC Vet Res ; 19(1): 126, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37596603

ABSTRACT

BACKGROUND: Infections caused by avian pathogenic Escherichia coli (APEC) result in significant economic losses in poultry industry. APEC strains are known to form biofilms in various conditions allowing them to thrive even under harsh and nutrient-deficient conditions on different surfaces, and this ability enables them to evade chemical and biological eradication methods. Despite knowing the whole genome sequences of various APEC isolates, little has been reported regarding their biofilm-associated genes. A random transposon mutant library of the wild-type APEC IMT 5155 comprising 1,300 mutants was analyzed for biofilm formation under nutrient deprived conditions using Videoscan technology coupled with fluorescence microscopy. Seven transposon mutants were found to have reproducibly and significantly altered biofilm formation and their mutated genes were identified by arbitrary PCR and DNA sequencing. The intact genes were acquired from the wild-type strain, cloned in pACYC177 plasmid and transformed into the respective altered biofilm forming transposon mutants, and the biofilm formation was checked in comparison to the wild type and mutant strains under the same conditions. RESULTS: In this study, we report seven genes i.e., nhaA, fdeC, yjhB, lysU, ecpR, AJB35136 and fdtA of APEC with significant contribution to biofilm formation. Reintroduction of AJB35136 and fdtA, reversed the altered phenotype proving that a significant role being played by these two O-antigen related genes in APEC biofilm formation. Presence of these seven genes across nonpathogenic E. coli and APEC genomes was also analyzed showing that they are more prevalent in the latter. CONCLUSIONS: The study has elucidated the role of these genes in APEC biofilm formation and compared them to adhesion expanding the knowledge and understanding of the economically significant pathogens.


Subject(s)
Birds , Escherichia coli , Animals , Escherichia coli/genetics , Biofilms , Microscopy, Fluorescence/veterinary , Nutrients
7.
Int J Mol Sci ; 24(7)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37047137

ABSTRACT

Lens epithelium-derived growth factor splice variant of 75 kDa (LEDGF/p75) is an autoantigen over-expressed in solid tumors and acts as a stress-related transcriptional co-activator. Participation of autoimmune responses in the pathophysiology of benign prostatic hyperplasia (PBH) and a corresponding immunosuppressive therapy by TNFalpha antagonists has been recently suggested. Thus, autoAb testing could aid in the diagnosis of BPH patients profiting from such therapy. We generated CRISPR/Cas9 modified HEp-2 LEDGF knock-out (KO) and HEp-2 LEDGF/p75 over-expressing (OE) cells and examined IgG autoantibody reactivity to LEDGF/p75 in patients with prostate cancer (PCa, n = 89), bladder cancer (BCa, n = 116), benign prostatic hyperplasia (BPH, n = 103), and blood donors (BD, n = 60) by indirect immunofluorescence assay (IFA). Surprisingly, we could not detect elevated binding of autoAbs against LEDGF/p75 in cancer patients, but autoAb reactivity to LEDGF/p75 OE cells in about 50% of patients with BPH was unexpectedly significantly increased. Furthermore, a line immunoassay enabling the detection of 18 different autoAbs revealed a significantly increased occurrence of anti-dsDNA autoAbs in 34% of BPH patients in contrast to tumor patients and BD. This finding was confirmed by anti-mitochondrial (mDNA) autoAb detection with the Crithidia luciliae immunofluorescence test, which also showed a significantly higher prevalence (34%) of anti-mDNA autoAbs in BPH. In summary, our study provided further evidence for the occurrence of autoimmune responses in BPH. Furthermore, LEDGF/p75 over-expression renders HEp-2 cells more autoantigenic and an ideal target for autoAb analysis in BPH with a potential therapy consequence.


Subject(s)
Prostatic Hyperplasia , Male , Humans , Prostatic Hyperplasia/diagnosis , Prostatic Hyperplasia/genetics , Cell Line, Tumor , Intercellular Signaling Peptides and Proteins/genetics , Immunoglobulin G
8.
Primates ; 64(3): 339-350, 2023 May.
Article in English | MEDLINE | ID: mdl-36808317

ABSTRACT

Great apes lose suitable habitats required for their reproduction and survival due to human activities across their distribution range in Africa. Little is known about habitat suitability of the Nigeria-Cameroon chimpanzee [Pan troglodytes ellioti (Matschie, 1914)], particularly for populations inhabiting forest reserves in North-West Cameroon. To address this knowledge gap, we employed a common species distribution model (MaxEnt) to map and predict suitable habitats for the Nigeria-Cameroon chimpanzee in Kom-Wum Forest Reserve, North-West Cameroon, based on environmental factors that potentially affect habitat suitability. We related these environmental factors to a dataset of chimpanzee occurrence points recorded during line transect and reconnaissance (recce) surveys in the forest reserve and surrounding forests.  Up to 91% of the study area is unsuitable for chimpanzees. Suitable habitats only represented 9% of the study area, with a high proportion of highly suitable habitats located outside the forest reserve. Elevation, secondary forests density, distance to villages and primary forests density were the most important predictors of habitat suitability for the Nigeria-Cameroon chimpanzee. The probability of chimpanzee occurrence increased with elevation, secondary forest density and distance from villages and roads. Our study provides evidence that suitable chimpanzee habitat in the reserve is degraded, suggesting that efforts to maintain protected areas are insufficient. The reserve management plan needs to be improved to conserve the remaining suitable habitat and to avoid local extinction of this endangered subspecies.


Subject(s)
Ecosystem , Pan troglodytes , Humans , Animals , Cameroon , Nigeria , Forests
9.
ACS Omega ; 8(1): 682-687, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36643518

ABSTRACT

Biofilm-associated bacterial infections are problematic for physicians due to high antimicrobial resistance in biofilm-forming bacteria. Staphylococcus species, particularly Staphylococcus epidermidis, cause severe infections particularly associated with clinical implants. In this study, we have detected the biofilm formation potential of clinical S. epidermidis isolates using phenotypic and genotypic approaches in nutrient-rich and nutrient-deficient growth conditions. The Congo red agar method determined the biofilm formation potential with limited efficacy. However, the tissue culture plate method adroitly classified the isolates as strong, moderate, weak, and non-biofilm producers with five (10%) of the isolates as strong biofilm producers. Ten biofilm-associated genes were targeted, and the fruA gene was found to be the most prevalent (20%). Three antibiofilm compounds, carvacrol, 2-aminobenzemidazole, and 3-indole acetonitrile, were assessed against strong biofilm-producing S. epidermidis isolates. To the best of our knowledge, this is the first report of genotypic and phenotypic detection of biofilms formed by clinical S. epidermidis isolates from this region. The use of 3-indole acetonitrile against these biofilms and toluene as a solvent is novel. The study highlights the significance of biofilm and antibiofilm potential of the studied compounds for effective treatment and control of S. epidermidis infections.

10.
Clin Immunol ; 247: 109214, 2023 02.
Article in English | MEDLINE | ID: mdl-36608744

ABSTRACT

Glycoprotein 2 (GP2) is an autoantigen in Crohn's (CD) and coeliac disease (CeD). We assessed GP2-isoform (GP21-4)-expression in intestinal biopsies of paediatric patients with CD, CeD, ulcerative colitis (UC), and healthy children (HC). Transcription of GP21-4 was elevated in proximal small intestine in CeD and CD patients (only GP22/4) compared to jejunum (CeD/CD) and large bowel (CD). CeD patients demonstrated higher duodenal GP22/4-mRNA levels compared to HC/UC patients whereas CD patients showed higher GP24-mRNA levels compared to UC patients. Duodenal synthesis of only small GP2 isoforms (GP23/4) was demonstrated in epithelial cells in patients/HC and in Brunner glands (also large isoforms) with a more frequent apical location in CD/CeD patients. All four GP2 isoforms interacted with gliadin and phosphopeptidomannan. Gliadin digestion improved binding to GP2 isoforms. GP21-4 binding to CeD/CD-related antigens, elevated duodenal GP21-4-mRNA transcription, and GP2-protein secretion in Brunner glands of CeD/CD patients suggest an autoimmune CeD/CD link.


Subject(s)
Brunner Glands , Celiac Disease , Colitis, Ulcerative , Crohn Disease , Humans , Child , Gliadin , GPI-Linked Proteins , Autoantibodies , Crohn Disease/genetics , Colitis, Ulcerative/genetics , Protein Isoforms , RNA, Messenger/genetics
11.
Microorganisms ; 10(10)2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36296341

ABSTRACT

Klebsiella pneumoniae is a common member of the intestinal flora of vertebrates. In addition to opportunistic representatives, hypervirulent (hvKp) and antibiotic-resistant K. pneumoniae (ABR-Kp) occur. While ABR-Kp isolates often cause difficult-to-treat diseases due to limited therapeutic options, hvKp is a pathotype that can infect healthy individuals often leading to recurrent infection. Here, we investigated the clinical K. pneumoniae isolate PBIO3459 obtained from a blood sample, which showed an unusual colony morphology. By combining whole-genome and RNA sequencing with multiple in vitro and in vivo virulence-associated assays, we aimed to define the respective Klebsiella subtype and explore the unusual phenotypic appearance. We demonstrate that PBIO3459 belongs to sequence type (ST)20 and carries no acquired resistance genes, consistent with phenotypic susceptibility tests. In addition, the isolate showed low-level virulence, both at genetic and phenotypic levels. We thus suggest that PBIO3459 is an opportunistic (commensal) K. pneumoniae isolate. Genomic comparison of PBIO3459 with closely related ABR-Kp ST20 isolates revealed that they differed only in resistance genes. Finally, the unusual colony morphology was mainly associated with carbohydrate and amino acid transport and metabolism. In conclusion, our study reveals the characteristics of a Klebsiella sepsis isolate and suggests that opportunistic representatives likely acquire and accumulate antibiotic resistances that subsequently enable their emergence as ABR-Kp pathogens.

12.
PLoS One ; 17(3): e0265622, 2022.
Article in English | MEDLINE | ID: mdl-35298548

ABSTRACT

BACKGROUND: Through continuous innovation and improvement, Nanopore sequencing has become a powerful technology. Because of its fast processing time, low cost, and ability to generate long reads, this sequencing technique would be particularly suitable for clinical diagnostics. However, its raw data accuracy is inferior in contrast to other sequencing technologies. This constraint still results in limited use of Nanopore sequencing in the field of clinical diagnostics and requires further validation and IVD certification. METHODS: We evaluated the performance of latest Nanopore sequencing in combination with a dedicated data-analysis pipeline for single nucleotide polymorphism (SNP) genotyping of the familial Mediterranean fever gene (MEFV) by amplicon sequencing of 47 clinical samples. Mutations in MEFV are associated with Mediterranean fever, a hereditary periodic fever syndrome. Conventional Sanger sequencing, which is commonly applied in clinical genetic diagnostics, was used as a reference method. RESULTS: Nanopore sequencing enabled the sequencing of 10 target regions within MEFV with high read depth (median read depth 7565x) in all samples and identified a total of 435 SNPs in the whole sample collective, of which 29 were unique. Comparison of both sequencing workflows showed a near perfect agreement with no false negative calls. Precision, Recall, and F1-Score of the Nanopore sequencing workflow were > 0.99, respectively. CONCLUSIONS: These results demonstrated the great potential of current Nanopore sequencing for application in clinical diagnostics, at least for SNP genotyping by amplicon sequencing. Other more complex applications, especially structural variant identification, require further in-depth clinical validation.


Subject(s)
Familial Mediterranean Fever , Nanopore Sequencing , Nanopores , Familial Mediterranean Fever/diagnosis , Familial Mediterranean Fever/genetics , Genotype , High-Throughput Nucleotide Sequencing/methods , Humans , Polymorphism, Single Nucleotide , Pyrin/genetics
14.
Sci Rep ; 12(1): 2961, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35194086

ABSTRACT

For improving aptamer-ligand binding we have developed a screening system that defines optimal binding buffer composition. Using multiplex assays, one buffer system is needed which guarantees the specific binding of all aptamers. We investigated nine peer-reviewed DNA aptamers. Non-specific binding of aptamers is an obstacle. To address this, we investigated 16 proteins as specificity controls bound covalently to encoded microbeads in a multiplex assay. Increasing the NaCl concentration decreased the binding for all aptamers. Changing pH values by one unit higher or lower did not influence the aptamer binding significantly. However, pH < 5 led to non-specific binding for all aptamers. The PfLDH-aptamer selected in the absence of divalent cations exhibited doubling of its binding signal by the addition of Ca2+ and Mg2+. We confirmed Ca2+ and Mg2+ dependency of the aptamers for streptavidin and thrombin by observing a 90% and 50% binding decrease, respectively. We also achieved a doubling of binding for the streptavidin aptamer when replacing Ca2+ and Mg2+ by Mn2+. A buffer suitable for all aptamers can have considerable variations in pH or ionic strength, but divalent cations (Ca2+, Mg2+, Mn2+) are essential.


Subject(s)
Aptamers, Nucleotide/chemistry , Microspheres , Streptavidin/chemistry , Cations, Divalent/chemistry , Fluorescence
15.
Appl Environ Microbiol ; 88(5): e0227921, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35020452

ABSTRACT

Pathogenic bacteria, such as enteropathogenic Escherichia coli (EPEC) and enterotoxigenic E. coli (ETEC), cause diarrhea in mammals. In particular, E. coli colonizes and infects the gastrointestinal tract via type 1 fimbriae (T1F). Here, the major zymogen granule membrane glycoprotein 2 (GP2) acts as a host cell receptor. GP2 is also secreted by the pancreas and various mucous glands, interacting with luminal type 1 fimbriae-positive E. coli. It is unknown whether GP2 isoforms demonstrate specific E. coli pathotype binding. In this study, we investigated interactions of human, porcine, and bovine EPEC and ETEC, as well as commensal E. coli isolates with human, porcine, and bovine GP2. We first defined pathotype- and host-associated FimH variants. Second, we could prove that GP2 isoforms bound to FimH variants to various degrees. However, the GP2-FimH interactions did not seem to be influenced by the host specificity of E. coli. In contrast, soluble GP2 affected ETEC infection and phagocytosis rates of macrophages. Preincubation of the ETEC pathotype with GP2 reduced the infection of cell lines. Furthermore, preincubation of E. coli with GP2 improved the phagocytosis rate of macrophages. Our findings suggest that GP2 plays a role in the defense against E. coli infection and in the corresponding host immune response. IMPORTANCE Infection by pathogenic bacteria, such as certain Escherichia coli pathotypes, results in diarrhea in mammals. Pathogens, including zoonotic agents, can infect different hosts or show host specificity. There are Escherichia coli strains which are frequently transmitted between humans and animals, whereas other Escherichia coli strains tend to colonize only one host. This host specificity is still not fully understood. We show that glycoprotein 2 is a selective receptor for particular Escherichia coli strains or variants of the adhesin FimH but not a selector for a species-specific Escherichia coli group. We demonstrate that GP2 is involved in the regulation of colonization and infection and thus represents a molecule of interest for the prevention or treatment of disease.


Subject(s)
Enteropathogenic Escherichia coli , Enterotoxigenic Escherichia coli , Escherichia coli Infections , Animals , Cattle , Diarrhea/microbiology , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Fimbriae, Bacterial/metabolism , Mammals , Membrane Glycoproteins/metabolism , Secretory Vesicles/metabolism , Swine
16.
Microb Genom ; 7(12)2021 12.
Article in English | MEDLINE | ID: mdl-34939560

ABSTRACT

Since the discovery of haemolysis, many studies focused on a deeper understanding of this phenotype in Escherichia coli and its association with other virulence genes, diseases and pathogenic attributes/functions in the host. Our virulence-associated factor profiling and genome-wide association analysis of genomes of haemolytic and nonhaemolytic E. coli unveiled high prevalence of adhesins, iron acquisition genes and toxins in haemolytic bacteria. In the case of fimbriae with high prevalence, we analysed sequence variation of FimH, EcpD and CsgA, and showed that different adhesin variants were present in the analysed groups, indicating altered adhesive capabilities of haemolytic and nonhaemolytic E. coli. Analysis of over 1000 haemolytic E. coli genomes revealed that they are pathotypically, genetically and antigenically diverse, but their adhesin and iron acquisition repertoire is associated with genome placement of hlyCABD cluster. Haemolytic E. coli with chromosome-encoded alpha-haemolysin had high frequency of P, S, Auf fimbriae and multiple iron acquisition systems such as aerobactin, yersiniabactin, salmochelin, Fec, Sit, Bfd and hemin uptake systems. Haemolytic E. coli with plasmid-encoded alpha-haemolysin had similar adhesin profile to nonpathogenic E. coli, with high prevalence of Stg, Yra, Ygi, Ycb, Ybg, Ycf, Sfm, F9 fimbriae, Paa, Lda, intimin and type 3 secretion system encoding genes. Analysis of HlyCABD sequence variation revealed presence of variants associated with genome placement and pathotype.


Subject(s)
Adhesins, Escherichia coli/genetics , Escherichia coli/genetics , Hemolysin Proteins/genetics , Iron/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Fimbriae Proteins/genetics , Humans , Molecular Chaperones/genetics , Multigene Family , Mutation , Plasmids/genetics
17.
PLoS Pathog ; 17(12): e1010118, 2021 12.
Article in English | MEDLINE | ID: mdl-34860860

ABSTRACT

Antiphospholipid antibodies (aPL), assumed to cause antiphospholipid syndrome (APS), are notorious for their heterogeneity in targeting phospholipids and phospholipid-binding proteins. The persistent presence of Lupus anticoagulant and/or aPL against cardiolipin and/or ß2-glycoprotein I have been shown to be independent risk factors for vascular thrombosis and pregnancy morbidity in APS. aPL production is thought to be triggered by-among other factors-viral infections, though infection-associated aPL have mostly been considered non-pathogenic. Recently, the potential pathogenicity of infection-associated aPL has gained momentum since an increasing number of patients infected with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been described with coagulation abnormalities and hyperinflammation, together with the presence of aPL. Here, we present data from a multicentric, mixed-severity study including three cohorts of individuals who contracted SARS-CoV-2 as well as non-infected blood donors. We simultaneously measured 10 different criteria and non-criteria aPL (IgM and IgG) by using a line immunoassay. Further, IgG antibody response against three SARS-CoV-2 proteins was investigated using tripartite automated blood immunoassay technology. Our analyses revealed that selected non-criteria aPL were enriched concomitant to or after an infection with SARS-CoV-2. Linear mixed-effects models suggest an association of aPL with prothrombin (PT). The strength of the antibody response against SARS-CoV-2 was further influenced by SARS-CoV-2 disease severity and sex of the individuals. In conclusion, our study is the first to report an association between disease severity, anti-SARS-CoV-2 immunoreactivity, and aPL against PT in patients with SARS-CoV-2.


Subject(s)
Autoantibodies/blood , Immunoglobulin G/immunology , Prothrombin/immunology , SARS-CoV-2/immunology , COVID-19/complications , COVID-19/immunology , Cell Communication/immunology , Humans , Risk Factors , Severity of Illness Index
18.
Life (Basel) ; 11(11)2021 Oct 31.
Article in English | MEDLINE | ID: mdl-34833039

ABSTRACT

BACKGROUND: Laboratory diagnosis of Lyme borreliosis refers to some methods with known limitations. Molecular diagnostics using specific nucleic acid probes may overcome some of these limitations. METHODS: We describe the novel reporter fluorescence real-time polymerase chain reaction (PCR) probe system LoopTag for detection of Borrelia species. Advantages of the LoopTag system include having cheap conventional fluorescence dyes, easy primer design, no restrictions for PCR product lengths, robustness, high sequence specificity, applicability for multiplex real-time PCRs, melting curve analysis (single nucleotide polymorphism analysis) over a large temperature range, high sensitivity, and easy adaptation of conventional PCRs. RESULTS: Using the LoopTag probe system we were able to detect all nine tested European species belonging to the Borrelia burgdorferi (sensu lato) complex and differentiated them from relapsing fever Borrelia species. As few as 10 copies of Borrelia in one PCR reaction were detectable. CONCLUSION: We established a novel multiplex probe real-time PCR system, designated LoopTag, that is simple, robust, and incorporates melting curve analysis for the detection and in the differentiation of European species belonging to the Borrelia burgdorferi s.l. complex.

19.
Appl Microbiol Biotechnol ; 105(24): 9321-9332, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34797390

ABSTRACT

Infections caused by carbapenem-resistant Pseudomonas aeruginosa are life-threatening due to its synergistic resistance mechanisms resulting in the ineffectiveness of the used antimicrobials. This study aimed to characterize P. aeruginosa isolates for antimicrobial susceptibility, biofilm formation virulence genes, and molecular mechanisms responsible for resistance against various antimicrobials. Out of 700 samples, 91 isolates were confirmed as P. aeruginosa which were further classified into 19 non-multidrug-resistant (non-MDR), 7 multidrug-resistant (MDR), 19 extensively drug-resistant (XDR), and 8 pan drug-resistant (PDR) pulsotypes based on standard Kirby Bauer disc diffusion test and pulse field gel electrophoresis. In M9 minimal media, strong biofilms were formed by the XDR and PDR pulsotypes as compared to the non-MDR pulsotypes. The virulence genes, responsible for the worsening of wounds including LasB, plcH, toxA, and exoU, were detected among all MDR, XDR, and PDR pulsotypes. Carbapenemase activity was phenotypically detected in 45% pulsotypes and the responsible genes were found as blaGES (100%), blaVIM (58%), blaIMP (4%), and blaNDM (4%). Real-time polymerase chain reaction showed the concomitant use of multiple mechanisms such as oprD under-expression, enhanced efflux pump activity, and ampC overexpression in the resistant isolates. Polymyxin is found as the only class left with more than 80% susceptibility among the isolates which is an alarming situation suggesting appropriate measures to be taken including alternative therapies. KEY POINTS: • Multidrug-resistant P. aeruginosa isolates formed stronger biofilms in minimal media. • Only polymyxin antimicrobial was found effective against MDR P. aeruginosa isolates. • Under-expression of oprD and overexpression of ampC were found in resistant isolates.


Subject(s)
Pseudomonas Infections , Wound Infection , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial , Drug Resistance, Multiple, Bacterial , Humans , Microbial Sensitivity Tests , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/genetics , beta-Lactamases/genetics
20.
Sci Rep ; 11(1): 21385, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34725400

ABSTRACT

Shortages of reverse transcriptase (RT)-polymerase chain reaction (PCR) reagents and related equipment during the COVID-19 pandemic have demonstrated the need for alternative, high-throughput methods for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-mass screening in clinical diagnostic laboratories. A robust, SARS-CoV-2 RT-loop-mediated isothermal amplification (RT-LAMP) assay with high-throughput and short turnaround times in a clinical laboratory setting was established and compared to two conventional RT-PCR protocols using 323 samples of individuals with suspected SARS-CoV-2 infection. Limit of detection (LoD) and reproducibility of the isolation-free SARS-CoV-2 RT-LAMP test were determined. An almost perfect agreement (Cohen's kappa > 0.8) between the novel test and two classical RT-PCR protocols with no systematic difference (McNemar's test, P > 0.05) was observed. Sensitivity and specificity were in the range of 89.5 to 100% and 96.2 to 100% dependent on the reaction condition and the RT-PCR method used as reference. The isolation-free RT-LAMP assay showed high reproducibility (Tt intra-run coefficient of variation [CV] = 0.4%, Tt inter-run CV = 2.1%) with a LoD of 95 SARS-CoV-2 genome copies per reaction. The established SARS-CoV-2 RT-LAMP assay is a flexible and efficient alternative to conventional RT-PCR protocols, suitable for SARS-CoV-2 mass screening using existing laboratory infrastructure in clinical diagnostic laboratories.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , COVID-19/epidemiology , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Pandemics , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , COVID-19/virology , Genome, Viral , Humans , Infection Control/methods , Limit of Detection , Mass Screening/methods , RNA, Viral/genetics , RNA, Viral/isolation & purification , RNA-Directed DNA Polymerase/genetics , Reproducibility of Results , Reverse Transcription/genetics , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...