Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
2.
Mult Scler J Exp Transl Clin ; 9(4): 20552173231208271, 2023.
Article in English | MEDLINE | ID: mdl-38021452

ABSTRACT

Background: Tremor affects up to 45% of patients with Multiple Sclerosis (PwMS). Current understanding is based on insights from other neurological disorders, thus, not fully addressing the distinctive aspects of MS pathology. Objective: To characterize the brain white matter (WM) correlates of MS-related tremor using diffusion tensor imaging (DTI). Methods: In a prospective case-control study, PwMS with tremor were assessed for tremor severity and underwent MRI scans including DTI. PwMS without tremor served as matched controls. After tract selection and segmentation, the resulting diffusivity measures were used to calculate group differences and correlations with tremor severity. Results: This study included 72 PwMS. The tremor group (n = 36) exhibited significant changes in several pathways, notably in the right inferior longitudinal fasciculus (Cohen's d = 1.53, q < 0.001) and left corticospinal tract (d = 1.32, q < 0.001), compared to controls (n = 36). Furthermore, specific tracts showed a significant correlation with tremor severity, notably in the left medial lemniscus (Spearman's coefficient [rsp] = -0.56, p < 0.001), and forceps minor of corpus callosum (rsp = -0.45, p < 0.01). Conclusion: MS-related tremor is associated with widespread diffusivity changes in WM pathways and its severity correlates with commissural and sensory projection pathways, which suggests a role for proprioception or involvement of the dentato-rubro-olivary circuit.

3.
J Parkinsons Dis ; 13(4): 501-513, 2023.
Article in English | MEDLINE | ID: mdl-37212075

ABSTRACT

BACKGROUND: Parkinson's disease is a heterogeneous neurodegenerative disorder with distinctive gut microbiome patterns suggesting that interventions targeting the gut microbiota may prevent, slow, or reverse disease progression and severity. OBJECTIVE: Because secretory IgA (SIgA) plays a key role in shaping the gut microbiota, characterization of the IgA-Biome of individuals classified into either the akinetic rigid (AR) or tremor dominant (TD) Parkinson's disease clinical subtypes was used to further define taxa unique to these distinct clinical phenotypes. METHODS: Flow cytometry was used to separate IgA-coated and -uncoated bacteria from stool samples obtained from AR and TD patients followed by amplification and sequencing of the V4 region of the 16 S rDNA gene on the MiSeq platform (Illumina). RESULTS: IgA-Biome analyses identified significant alpha and beta diversity differences between the Parkinson's disease phenotypes and the Firmicutes/Bacteroides ratio was significantly higher in those with TD compared to those with AR. In addition, discriminant taxa analyses identified a more pro-inflammatory bacterial profile in the IgA+ fraction of those with the AR clinical subclass compared to IgA-Biome analyses of those with the TD subclass and with the taxa identified in the unsorted control samples. CONCLUSION: IgA-Biome analyses underscores the importance of the host immune response in shaping the gut microbiome potentially affecting disease progression and presentation. In the present study, IgA-Biome analyses identified a unique proinflammatory microbial signature in the IgA+ fraction of those with AR that would have otherwise been undetected using conventional microbiome analysis approaches.


Subject(s)
Gastrointestinal Microbiome , Parkinson Disease , Humans , Parkinson Disease/complications , Tremor/etiology , Gastrointestinal Microbiome/physiology , Disease Progression , Immunoglobulin A
4.
Brain ; 146(8): 3258-3272, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36881989

ABSTRACT

The neurodegenerative synucleinopathies, including Parkinson's disease and dementia with Lewy bodies, are characterized by a typically lengthy prodromal period of progressive subclinical motor and non-motor manifestations. Among these, idiopathic REM sleep behaviour disorder is a powerful early predictor of eventual phenoconversion, and therefore represents a critical opportunity to intervene with neuroprotective therapy. To inform the design of randomized trials, it is essential to study the natural progression of clinical markers during the prodromal stages of disease in order to establish optimal clinical end points. In this study, we combined prospective follow-up data from 28 centres of the International REM Sleep Behavior Disorder Study Group representing 12 countries. Polysomnogram-confirmed REM sleep behaviour disorder subjects were assessed for prodromal Parkinson's disease using the Movement Disorder Society criteria and underwent periodic structured sleep, motor, cognitive, autonomic and olfactory testing. We used linear mixed-effect modelling to estimate annual rates of clinical marker progression stratified by disease subtype, including prodromal Parkinson's disease and prodromal dementia with Lewy bodies. In addition, we calculated sample size requirements to demonstrate slowing of progression under different anticipated treatment effects. Overall, 1160 subjects were followed over an average of 3.3 ± 2.2 years. Among clinical variables assessed continuously, motor variables tended to progress faster and required the lowest sample sizes, ranging from 151 to 560 per group (at 50% drug efficacy and 2-year follow-up). By contrast, cognitive, olfactory and autonomic variables showed modest progression with higher variability, resulting in high sample sizes. The most efficient design was a time-to-event analysis using combined milestones of motor and cognitive decline, estimating 117 per group at 50% drug efficacy and 2-year trial duration. Finally, while phenoconverters showed overall greater progression than non-converters in motor, olfactory, cognitive and certain autonomic markers, the only robust difference in progression between Parkinson's disease and dementia with Lewy bodies phenoconverters was in cognitive testing. This large multicentre study demonstrates the evolution of motor and non-motor manifestations in prodromal synucleinopathy. These findings provide optimized clinical end points and sample size estimates to inform future neuroprotective trials.


Subject(s)
Lewy Body Disease , Parkinson Disease , REM Sleep Behavior Disorder , Humans , Parkinson Disease/complications , Parkinson Disease/diagnosis , Lewy Body Disease/diagnosis , REM Sleep Behavior Disorder/diagnosis , Prospective Studies , Disease Progression , Biomarkers , Prodromal Symptoms
5.
Front Neurol ; 14: 1104759, 2023.
Article in English | MEDLINE | ID: mdl-36937520

ABSTRACT

Background and purpose: The intestinal microbiome plays a primary role in the pathogenesis of neurodegenerative disorders and may provide an opportunity for disease modification. We performed a pilot clinical study looking at the safety of fecal microbiota transplantation (FMT), its effect on the microbiome, and improvement of symptoms in Parkinson's disease. Methods: This was a randomized, double-blind placebo-controlled pilot study, wherein orally administered lyophilized FMT product or matching placebo was given to 12 subjects with mild to moderate Parkinson's disease with constipation twice weekly for 12 weeks. Subjects were followed for safety and clinical improvement for 9 additional months (total study duration 12 months). Results: Fecal microbiota transplantation caused non-severe transient upper gastrointestinal symptoms. One subject receiving FMT was diagnosed with unrelated metastatic cancer and was removed from the trial. Beta diversity (taxa) of the microbiome, was similar comparing placebo and FMT groups at baseline, however, for subjects randomized to FMT, it increased significantly at 6 weeks (p = 0.008) and 13 weeks (p = 0.0008). After treatment with FMT, proportions of selective families within the phylum Firmicutes increased significantly, while proportion of microbiota belonging to Proteobacteria were significantly reduced. Objective motor findings showed only temporary improvement while subjective symptom improvements were reported compared to baseline in the group receiving FMT. Constipation, gut transient times (NS), and gut motility index (p = 0.0374) were improved in the FMT group. Conclusions: Subjects with Parkinson's disease tolerated multi-dose-FMT, and experienced increased diversity of the intestinal microbiome that was associated with reduction in constipation and improved gut transit and intestinal motility. Fecal microbiota transplantation administration improved subjective motor and non-motor symptoms. Clinical trial registration: ClinicalTrial.gov, identifier: NCT03671785.

6.
Clin Park Relat Disord ; 8: 100187, 2023.
Article in English | MEDLINE | ID: mdl-36793590

ABSTRACT

Introduction: Motor classifications of Parkinson's Disease (PD) have been widely used. This paper aims to update a subtype classification using the MDS-UPDRS-III and determine if cerebrospinal neurotransmitter profiles (HVA and 5-HIAA) differ between these subtypes in a cohort from the Parkinson's Progression Marker Initiative (PPMI). Methods: UPDRS and MDS-UPDRS scores were collected for 20 PD patients. Akinetic-rigid (AR), Tremor-dominant (TD), and Mixed (MX) subtypes were calculated using a formula derived from UPDRS, and a new ratio was developed for subtyping patients with the MDS-UPDRS. This new formula was subsequently applied to 95 PD patients from the PPMI dataset, and subtyping was correlated to neurotransmitter levels. Data were analyzed using receiver operating characteristic models and ANOVA. Results: Compared to previous UPDRS classifications, the new MDS-UPDRS TD/AR ratios produced significant areas under the curve (AUC) for each subtype. The optimal sensitivity and specificity cutoff scores were ≥0.82 for TD, ≤0.71 for AR, and >0.71 and <0.82 for Mixed. Analysis of variance showed that the AR group had significantly lower HVA and 5-HIAA levels than the TD and HC groups. A logistic model using neurotransmitter levels and MDS-UPDRS-III could predict the subtype classification. Conclusions: This MDS-UPDRS motor classification system provides a method to transition from the original UPDRS to the new MDS-UPDRS. It is a reliable and quantifiable subtyping tool for monitoring disease progression. The TD subtype is associated with lower motor scores and higher HVA levels, while the AR subtype is associated with higher motor scores and lower 5-HIAA levels.

9.
JAMA ; 326(10): 926-939, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34519802

ABSTRACT

Importance: Urate elevation, despite associations with crystallopathic, cardiovascular, and metabolic disorders, has been pursued as a potential disease-modifying strategy for Parkinson disease (PD) based on convergent biological, epidemiological, and clinical data. Objective: To determine whether sustained urate-elevating treatment with the urate precursor inosine slows early PD progression. Design, Participants, and Setting: Randomized, double-blind, placebo-controlled, phase 3 trial of oral inosine treatment in early PD. A total of 587 individuals consented, and 298 with PD not yet requiring dopaminergic medication, striatal dopamine transporter deficiency, and serum urate below the population median concentration (<5.8 mg/dL) were randomized between August 2016 and December 2017 at 58 US sites, and were followed up through June 2019. Interventions: Inosine, dosed by blinded titration to increase serum urate concentrations to 7.1-8.0 mg/dL (n = 149) or matching placebo (n = 149) for up to 2 years. Main Outcomes and Measures: The primary outcome was rate of change in the Movement Disorder Society Unified Parkinson Disease Rating Scale (MDS-UPDRS; parts I-III) total score (range, 0-236; higher scores indicate greater disability; minimum clinically important difference of 6.3 points) prior to dopaminergic drug therapy initiation. Secondary outcomes included serum urate to measure target engagement, adverse events to measure safety, and 29 efficacy measures of disability, quality of life, cognition, mood, autonomic function, and striatal dopamine transporter binding as a biomarker of neuronal integrity. Results: Based on a prespecified interim futility analysis, the study closed early, with 273 (92%) of the randomized participants (49% women; mean age, 63 years) completing the study. Clinical progression rates were not significantly different between participants randomized to inosine (MDS-UPDRS score, 11.1 [95% CI, 9.7-12.6] points per year) and placebo (MDS-UPDRS score, 9.9 [95% CI, 8.4-11.3] points per year; difference, 1.26 [95% CI, -0.59 to 3.11] points per year; P = .18). Sustained elevation of serum urate by 2.03 mg/dL (from a baseline level of 4.6 mg/dL; 44% increase) occurred in the inosine group vs a 0.01-mg/dL change in serum urate in the placebo group (difference, 2.02 mg/dL [95% CI, 1.85-2.19 mg/dL]; P<.001). There were no significant differences for secondary efficacy outcomes including dopamine transporter binding loss. Participants randomized to inosine, compared with placebo, experienced fewer serious adverse events (7.4 vs 13.1 per 100 patient-years) but more kidney stones (7.0 vs 1.4 stones per 100 patient-years). Conclusions and Relevance: Among patients recently diagnosed as having PD, treatment with inosine, compared with placebo, did not result in a significant difference in the rate of clinical disease progression. The findings do not support the use of inosine as a treatment for early PD. Trial Registration: ClinicalTrials.gov Identifier: NCT02642393.


Subject(s)
Disease Progression , Inosine/therapeutic use , Parkinson Disease/drug therapy , Uric Acid/blood , Aged , Biomarkers/blood , Dopamine Plasma Membrane Transport Proteins/deficiency , Double-Blind Method , Female , Humans , Inosine/adverse effects , Kidney Calculi/chemically induced , Male , Middle Aged , Parkinson Disease/blood , Parkinson Disease/physiopathology , Severity of Illness Index , Treatment Failure
10.
Sci Rep ; 11(1): 9313, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33927277

ABSTRACT

Our objective is to derive a sequential decision-making rule on the combination of medications to minimize motor symptoms using reinforcement learning (RL). Using an observational longitudinal cohort of Parkinson's disease patients, the Parkinson's Progression Markers Initiative database, we derived clinically relevant disease states and an optimal combination of medications for each of them by using policy iteration of the Markov decision process (MDP). We focused on 8 combinations of medications, i.e., Levodopa, a dopamine agonist, and other PD medications, as possible actions and motor symptom severity, based on the Unified Parkinson Disease Rating Scale (UPDRS) section III, as reward/penalty of decision. We analyzed a total of 5077 visits from 431 PD patients with 55.5 months follow-up. We excluded patients without UPDRS III scores or medication records. We derived a medication regimen that is comparable to a clinician's decision. The RL model achieved a lower level of motor symptom severity scores than what clinicians did, whereas the clinicians' medication rules were more consistent than the RL model. The RL model followed the clinician's medication rules in most cases but also suggested some changes, which leads to the difference in lowering symptoms severity. This is the first study to investigate RL to improve the pharmacological approach of PD patients. Our results contribute to the development of an interactive machine-physician ecosystem that relies on evidence-based medicine and can potentially enhance PD management.


Subject(s)
Drug Therapy, Combination , Machine Learning , Parkinson Disease/drug therapy , Aged , Cohort Studies , Female , Humans , Male , Markov Chains , Middle Aged
11.
Mov Disord ; 36(8): 1825-1834, 2021 08.
Article in English | MEDLINE | ID: mdl-33772873

ABSTRACT

BACKGROUND: Neuroinflammation plays a key role in PD pathogenesis, and allogeneic bone marrow-derived mesenchymal stem cells can be used as an immunomodulatory therapy. OBJECTIVE: The objective of this study was to prove the safety and tolerability of intravenous allogeneic bone marrow-derived mesenchymal stem cells in PD patients. METHODS: This was a 12-month single-center open-label dose-escalation phase 1 study of 20 subjects with mild/moderate PD assigned to a single intravenous infusion of 1 of 4 doses: 1, 3, 6, or 10 × 106 allogeneic bone marrow-derived mesenchymal stem cells/kg, evaluated 3, 12, 24, and 52 weeks postinfusion. Primary outcome safety measures included transfusion reaction, study-related adverse events, and immunogenic responses. Secondary outcomes included impact on peripheral markers, PD progression, and changes in brain perfusion. RESULTS: There were no serious adverse reactions related to the infusion and no responses to donor-specific human leukocyte antigens. Most common treatment-emergent adverse events were dyskinesias (20%, n = 4) with 1 emergent and 3 exacerbations; and hypertension (20%, n = 4) with 3 transient episodes and 1 requiring medical intervention. One possibly related serious adverse event occurred in a patient with a 4-year history of lymphocytosis who developed asymptomatic chronic lymphocytic leukemia. Peripheral inflammation markers appear to be reduced at 52 weeks in the highest dose including, tumor necrosis factor-α (P < 0.05), chemokine (C-C motif) ligand 22 (P < 0.05), whereas brain-derived neurotrophic factor (P < 0.05) increased. The highest dose seems to have demonstrated the most significant effect at 52 weeks, reducing the OFF state UPDRS motor, -14.4 (P < 0.01), and total, -20.8 (P < 0.05), scores. CONCLUSION: A single intravenous infusion of allogeneic bone marrow-derived mesenchymal stem cells at doses of 1, 3, 6, or 10 × 106 allogeneic bone marrow-derived mesenchymal stem cells/kg is safe, well tolerated, and not immunogenic in mild/moderate PD patients. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Hematopoietic Stem Cell Transplantation , Mesenchymal Stem Cells , Parkinson Disease , Bone Marrow , Humans , Infusions, Intravenous , Parkinson Disease/therapy
12.
Front Neurosci ; 15: 744190, 2021.
Article in English | MEDLINE | ID: mdl-35046766

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disorder. It is one of the leading sources of morbidity and mortality in the aging population AD cardinal symptoms include memory and executive function impairment that profoundly alters a patient's ability to perform activities of daily living. People with mild cognitive impairment (MCI) exhibit many of the early clinical symptoms of patients with AD and have a high chance of converting to AD in their lifetime. Diagnostic criteria rely on clinical assessment and brain magnetic resonance imaging (MRI). Many groups are working to help automate this process to improve the clinical workflow. Current computational approaches are focused on predicting whether or not a subject with MCI will convert to AD in the future. To our knowledge, limited attention has been given to the development of automated computer-assisted diagnosis (CAD) systems able to provide an AD conversion diagnosis in MCI patient cohorts followed longitudinally. This is important as these CAD systems could be used by primary care providers to monitor patients with MCI. The method outlined in this paper addresses this gap and presents a computationally efficient pre-processing and prediction pipeline, and is designed for recognizing patterns associated with AD conversion. We propose a new approach that leverages longitudinal data that can be easily acquired in a clinical setting (e.g., T1-weighted magnetic resonance images, cognitive tests, and demographic information) to identify the AD conversion point in MCI subjects with AUC = 84.7. In contrast, cognitive tests and demographics alone achieved AUC = 80.6, a statistically significant difference (n = 669, p < 0.05). We designed a convolutional neural network that is computationally efficient and requires only linear registration between imaging time points. The model architecture combines Attention and Inception architectures while utilizing both cross-sectional and longitudinal imaging and clinical information. Additionally, the top brain regions and clinical features that drove the model's decision were investigated. These included the thalamus, caudate, planum temporale, and the Rey Auditory Verbal Learning Test. We believe our method could be easily translated into the healthcare setting as an objective AD diagnostic tool for patients with MCI.

13.
Neurologist ; 25(6): 151-156, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33181722

ABSTRACT

BACKGROUND: There is considerable debate regarding the use of intraoperative microelectrode recording (MER) in deep brain stimulation (DBS). OBJECTIVE: To determine if the use of intraoperative MER impacts the final position of the lead implant in DBS of the subthalamic nucleus (STN) and globus pallidus (GPi) and to evaluate the incidence of complications. METHODS: The authors conducted a retrospective chart review of all patients who underwent STN and GPi DBS with MER, at the University of Texas Health Science Center in Houston from June 1, 2009 to October 1, 2013 to compare initial and final coordinates. Hemorrhagic and infectious complications were reviewed. RESULTS: A total of 90 lead implants on 46 patients implanted at the center during this time period were reviewed and included in the study. A statistically significant difference between the initial and final coordinates was observed in the superior-inferior direction with a mean difference of 0.40 mm inferiorly (±0.96 mm, P<0.05) and 0.96 mm inferiorly (±1.32 mm, P<0.05) in the STN and GPi locations, respectively. A nonstatistically significant difference was also observed in the anterior-posterior direction in both locations. There were no intraparenchymal hemorrhages on postoperative computed tomography. Two patients developed postoperative seizures (7.4%). One STN electrode (1.1%) required revision because of a suboptimal response. CONCLUSIONS: Intraoperative MER in STN and GPi DBS implant does not seem to have a higher rate of surgical complications compared with historical series not using MER and might also be useful in determining the final lead location.


Subject(s)
Deep Brain Stimulation , Dystonic Disorders/therapy , Globus Pallidus , Intraoperative Neurophysiological Monitoring , Neurosurgical Procedures , Parkinson Disease/therapy , Subthalamic Nucleus , Adolescent , Adult , Aged , Aged, 80 and over , Deep Brain Stimulation/adverse effects , Deep Brain Stimulation/statistics & numerical data , Female , Globus Pallidus/physiopathology , Globus Pallidus/surgery , Humans , Implantable Neurostimulators , Intraoperative Neurophysiological Monitoring/adverse effects , Intraoperative Neurophysiological Monitoring/statistics & numerical data , Magnetic Resonance Imaging , Male , Microelectrodes , Middle Aged , Neurosurgical Procedures/adverse effects , Neurosurgical Procedures/statistics & numerical data , Process Assessment, Health Care , Retrospective Studies , Subthalamic Nucleus/physiopathology , Subthalamic Nucleus/surgery , Young Adult
14.
Front Neurol ; 11: 815, 2020.
Article in English | MEDLINE | ID: mdl-32849245

ABSTRACT

Low levels of the natural antioxidant uric acid (UA) and the presence of REM sleep behavior disorder (RBD) are both associated with an increased likelihood of developing Parkinson's disease (PD). RBD and PD are also accompanied by basal ganglia dysfunction including decreased nigrostriatal and nigrocortical resting state functional connectivity. Despite these independent findings, the relationship between UA and substantia nigra (SN) functional connectivity remains unknown. In the present study, voxelwise analysis of covariance was used in a cross-sectional design to explore the relationship between UA and whole-brain SN functional connectivity using the eyes-open resting state fMRI method in controls without RBD, patients with idiopathic RBD, and PD patients with and without RBD. The results showed that controls exhibited a positive relationship between UA and SN functional connectivity with left lingual gyrus. The positive relationship was reduced in patients with RBD and PD with RBD, and the relationship was found to be negative in PD patients. These results are the first to show differential relationships between UA and SN functional connectivity among controls, prodromal, and diagnosed PD patients in a ventral occipital region previously documented to be metabolically and structurally altered in RBD and PD. More investigation, including replication in longitudinal designs with larger samples, is needed to understand the pathophysiological significance of these changes.

15.
J Neurol Neurosurg Psychiatry ; 91(7): 740-749, 2020 07.
Article in English | MEDLINE | ID: mdl-32404379

ABSTRACT

The rapid eye movement sleep behavioural disorder (RBD) population is an ideal study population for testing disease-modifying treatments for synucleinopathies, since RBD represents an early prodromal stage of synucleinopathy when neuropathology may be more responsive to treatment. While clonazepam and melatonin are most commonly used as symptomatic treatments for RBD, clinical trials of symptomatic treatments are also needed to identify evidence-based treatments. A comprehensive framework for both disease-modifying and symptomatic treatment trials in RBD is described, including potential treatments in the pipeline, cost-effective participant recruitment and selection, study design, outcomes and dissemination of results. For disease-modifying treatment clinical trials, the recommended primary outcome is phenoconversion to an overt synucleinopathy, and stratification features should be used to select a study population at high risk of phenoconversion, to enable more rapid clinical trials. For symptomatic treatment clinical trials, objective polysomnogram-based measurement of RBD-related movements and vocalisations should be the primary outcome measure, rather than subjective scales or diaries. Mobile technology to enable objective measurement of RBD episodes in the ambulatory setting, and advances in imaging, biofluid, tissue, and neurophysiological biomarkers of synucleinopathies, will enable more efficient clinical trials but are still in development. Increasing awareness of RBD among the general public and medical community coupled with timely diagnosis of these diseases will facilitate progress in the development of therapeutics for RBD and associated neurodegenerative disorders.


Subject(s)
Clinical Trials as Topic , REM Sleep Behavior Disorder/drug therapy , Sleep, REM/drug effects , Humans , Research Design
16.
Neuromodulation ; 23(7): 996-1002, 2020 Oct.
Article in English | MEDLINE | ID: mdl-31989725

ABSTRACT

OBJECTIVE: To assist in the assessment of intrathecal baclofen (ITB) therapy risks and benefits by providing surgical intervention rate, safety, and elective device replacement rate data. MATERIALS AND METHODS: An ongoing prospective, long-term, multicenter Product Surveillance Registry (PSR) (NCT01524276) enrolled consented patients implanted with the SynchroMed II infusion system. Pump and catheter performance data were collected, with patients followed prospectively for events related to the device, procedure, and therapy. Investigators provided event descriptions, patient symptoms, and patient outcomes. RESULTS: We analyzed registry data from 1743 patients (77% adult, 46.8% female) treated with ITB for severe spasticity at 53 registry sites between August 2003 and October 2017, for an accumulated 6481 patient-years. Discontinuation from the registry was largely (58.6% of discontinued patients) due to study site closure and patient relocation; exit due to an adverse event was limited to 0.3%. After 10 years, 87.2% of adult and 76.3% of pediatric patients continued with ITB. Overall, 99.1% of pumps reaching end of battery life were replaced at the time of explant. CONCLUSIONS: ITB therapy for the treatment of severe spasticity requires surgical implantation of a programmable infusion system for chronic drug delivery. If complications arise, many necessitate surgical intervention for correction. For spinal and cerebral spasticity in pediatric and adult patients, discontinuation rates due to an adverse event were low (0.3%), and there was high acceptance (99.1%) of surgical intervention for therapy continuation. Patient/caregiver willingness to accept surgical and other risks for therapy continuation was extremely high.


Subject(s)
Baclofen , Injections, Spinal , Muscle Relaxants, Central , Muscle Spasticity , Adult , Baclofen/therapeutic use , Child , Female , Humans , Infusion Pumps, Implantable , Male , Muscle Relaxants, Central/therapeutic use , Muscle Spasticity/drug therapy , Prospective Studies , Registries
17.
Front Neurosci ; 13: 1053, 2019.
Article in English | MEDLINE | ID: mdl-31636533

ABSTRACT

Alzheimer's disease (AD) is the most common neurodegenerative disorder worldwide and is one of the leading sources of morbidity and mortality in the aging population. There is a long preclinical period followed by mild cognitive impairment (MCI). Clinical diagnosis and the rate of decline is variable. Progression monitoring remains a challenge in AD, and it is imperative to create better tools to quantify this progression. Brain magnetic resonance imaging (MRI) is commonly used for patient assessment. However, current approaches for analysis require strong a priori assumptions about regions of interest used and complex preprocessing pipelines including computationally expensive non-linear registrations and iterative surface deformations. These preprocessing steps are composed of many stacked processing layers. Any error or bias in an upstream layer will be propagated throughout the pipeline. Failures or biases in the non-linear subject registration and the subjective choice of atlases of specific regions are common in medical neuroimaging analysis and may hinder the translation of many approaches to the clinical practice. Here we propose a data-driven method based on an extension of a deep learning architecture, DeepSymNet, that identifies longitudinal changes without relying on prior brain regions of interest, an atlas, or non-linear registration steps. Our approach is trained end-to-end and learns how a patient's brain structure dynamically changes between two-time points directly from the raw voxels. We compare our approach with Freesurfer longitudinal pipelines and voxel-based methods using the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Our model can identify AD progression with comparable results to existing Freesurfer longitudinal pipelines without the need of predefined regions of interest, non-rigid registration algorithms, or iterative surface deformation at a fraction of the processing time. When compared to other voxel-based methods which share some of the same benefits, our model showed a statistically significant performance improvement. Additionally, we show that our model can differentiate between healthy subjects and patients with MCI. The model's decision was investigated using the epsilon layer-wise propagation algorithm. We found that the predictions were driven by the pallidum, putamen, and the superior temporal gyrus. Our novel longitudinal based, deep learning approach has the potential to diagnose patients earlier and enable new computational tools to monitor neurodegeneration in clinical practice.

18.
Mov Disord ; 33(12): 1895-1901, 2018 12.
Article in English | MEDLINE | ID: mdl-30187527

ABSTRACT

BACKGROUND: Direct targeting of the dentato-rubro-thalamic tract is efficacious in DBS for tremor suppression. OBJECTIVES: We sought to compare outcomes and optimal stimulation parameters for tremor control using the technique of directly targeting the dentato-rubro-thalamic tract to those who underwent indirect targeting of the ventral intermediate nucleus thalamus. METHODS: Twenty consecutive essential tremor patients obtained preoperative diffusion MRIs, where the dentato-rubro-thalamic tract was individually drawn and used to directly target the ventral intermediate nucleus of the thalamus during surgery. These patients were compared to an earlier cohort of 20 consecutive patients who underwent surgery using atlas-based coordinates. Baseline and 1-year postsurgery tremor amplitude using The Essential Tremor Rating Assessment Scale was recorded, as were the parameters needed for successful tremor control. RESULTS: The indirectly targeted group had greater baseline and postop tremor severity relative to those directly targeted (baseline, 2.9 vs. 2.6; P = 0.02; postop, 1.1 vs. 0.8; P = 0.03). Mean voltage, pulse width, and frequency for optimal tremor control in the directly targeted group (38 electrodes) = 2.8 V, 80 µs, 153 Hz; the parameters for the indirectly targeted group (38 electrodes) = 2.9 V, 86 µs, 179 Hz (significantly greater, P < 0.001). Both groups had significant improvement in arm tremor amplitude from baseline (P < 0.001) without sustained side effects. CONCLUSION: Direct targeting of the dentato-rubro-thalamic tract provides excellent tremor control, comparable to indirectly targeting the ventral intermediate nucleus of the thalamus. Use of lower stimulation parameters, especially frequency, to control tremor in the directly targeted group suggests that it is a more efficient targeting methodology, which may minimize battery depletion. © 2018 International Parkinson and Movement Disorder Society.


Subject(s)
Deep Brain Stimulation , Essential Tremor/therapy , Adult , Aged , Aged, 80 and over , Cerebellar Nuclei/physiopathology , Deep Brain Stimulation/methods , Diffusion Tensor Imaging/methods , Essential Tremor/physiopathology , Female , Humans , Male , Middle Aged , Neural Pathways/physiopathology , Thalamus/physiopathology , Thalamus/surgery , Treatment Outcome
19.
Front Neurosci ; 12: 967, 2018.
Article in English | MEDLINE | ID: mdl-30686966

ABSTRACT

Parkinson's disease is the second most prevalent neurodegenerative disorder in the Western world. It is estimated that the neuronal loss related to Parkinson's disease precedes the clinical diagnosis by more than 10 years (prodromal phase) which leads to a subtle decline that translates into non-specific clinical signs and symptoms. By leveraging diffusion magnetic resonance imaging brain (MRI) data evaluated longitudinally, at least at two different time points, we have the opportunity of detecting and measuring brain changes early on in the neurodegenerative process, thereby allowing early detection and monitoring that can enable development and testing of disease modifying therapies. In this study, we were able to define a longitudinal degenerative Parkinson's disease progression pattern using diffusion magnetic resonance imaging connectivity information. Such pattern was discovered using a de novo early Parkinson's disease cohort (n = 21), and a cohort of Controls (n = 30). Afterward, it was tested in a cohort at high risk of being in the Parkinson's disease prodromal phase (n = 16). This progression pattern was numerically quantified with a longitudinal brain connectome progression score. This score is generated by an interpretable machine learning (ML) algorithm trained, with cross-validation, on the longitudinal connectivity information of Parkinson's disease and Control groups computed on a nigrostriatal pathway-specific parcellation atlas. Experiments indicated that the longitudinal brain connectome progression score was able to discriminate between the progression of Parkinson's disease and Control groups with an area under the receiver operating curve of 0.89 [confidence interval (CI): 0.81-0.96] and discriminate the progression of the High Risk Prodromal and Control groups with an area under the curve of 0.76 [CI: 0.66-0.92]. In these same subjects, common motor and cognitive clinical scores used in Parkinson's disease research showed little or no discriminative ability when evaluated longitudinally. Results suggest that it is possible to quantify neurodegenerative patterns of progression in the prodromal phase with longitudinal diffusion magnetic resonance imaging connectivity data and use these image-based patterns as progression markers for neurodegeneration.

20.
Parkinsons Dis ; 2017: 9358153, 2017.
Article in English | MEDLINE | ID: mdl-28951797

ABSTRACT

Neuromodulation of subcortical areas of the brain as therapy to reduce Parkinsonian motor symptoms was developed in the mid-twentieth century and went through many technical and scientific advances that established specific targets and stimulation parameters. Deep Brain Stimulation (DBS) was approved by the FDA in 2002 as neuromodulation therapy for advanced Parkinson's disease, prompting several randomized controlled trials that confirmed its safety and effectiveness. The implantation of tens of thousands of patients in North America and Europe ignited research into its potential role in early disease stages and the therapeutic benefit of DBS compared to best medical therapy. In 2013 the EARLY-STIM trial provided Class I evidence for the use of DBS earlier in Parkinson's disease. This finding led to the most recent FDA approval in patients with at least 4 years of disease duration and 4 months of motor complications as an adjunct therapy for patients not adequately controlled with medications. This following review highlights the historical development and advances made overtime in DBS implantation, the current application, and the challenges that come with it.

SELECTION OF CITATIONS
SEARCH DETAIL
...