Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
J Med Chem ; 67(13): 11209-11225, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38916990

ABSTRACT

Covalent hit identification is a viable approach to identify chemical starting points against difficult-to-drug targets. While most researchers screen libraries of <2k electrophilic fragments, focusing on lead-like compounds can be advantageous in terms of finding hits with improved affinity and with a better chance of identifying cryptic pockets. However, due to the increased molecular complexity, larger numbers of compounds (>10k) are desirable to ensure adequate coverage of chemical space. Herein, the approach taken to build a library of 12k covalent lead-like compounds is reported, utilizing legacy compounds, robust library chemistry, and acquisitions. The lead-like covalent library was screened against the antiapoptotic protein Bfl-1, and six promising hits that displaced the BIM peptide from the PPI interface were identified. Intriguingly, X-ray crystallography of lead-like compound 8 showed that it binds to a previously unobserved conformation of the Bfl-1 protein and is an ideal starting point for the optimization of Bfl-1 inhibitors.


Subject(s)
Cysteine , Drug Design , Small Molecule Libraries , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Crystallography, X-Ray , Cysteine/chemistry , Humans , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/chemistry , Proto-Oncogene Proteins c-bcl-2/metabolism , Structure-Activity Relationship , Models, Molecular , Minor Histocompatibility Antigens
2.
Chemistry ; 29(42): e202301421, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37159864

ABSTRACT

We report the discovery of a straightforward protocol to convert phenols into the corresponding aryl triflates using 1-methyl-3-((trifluoromethyl)sulfonyl)-1,3-dihydro-2H-benzo[d]imidazol-2-one in the presence of a fluoride source. This novel reagent can be handled without any precautions to exclude air or moisture making this method highly convenient. The reactions generally show very clean conversions within only a few minutes at room temperature. The mild conditions allow the so far unprecedented O-triflation of tyrosine in peptides bearing challenging side chains present for example in arginine and histidine including the late-stage triflation of complex bioactive peptides. We show how aryl triflates - an interesting but so far underutilized group - can be used to optimize physicochemical and in vitro properties of compound series in medicinal chemistry. We believe that this method is highly attractive for applications in peptide functionalization as well as automated and medicinal chemistry.


Subject(s)
Peptides , Phenols , Histidine , Indicators and Reagents
4.
Prog Med Chem ; 61: 93-162, 2022.
Article in English | MEDLINE | ID: mdl-35753716

ABSTRACT

Inhalation of small molecule drugs has proven very efficacious for the treatment of respiratory diseases due to enhanced efficacy and a favourable therapeutic index compared with other dosing routes. It enables targeted delivery to the lung with rapid onset of therapeutic action, low systemic drug exposure, and thereby reduced systemic side effects. An increasing number of pharmaceutical companies and biotechs are investing in new modalities-for this review defined as therapeutic molecules with a molecular weight >800Da and therefore beyond usual inhaled small molecule drug-like space. However, our experience with inhaled administration of PROTACs, peptides, oligonucleotides (antisense oligonucleotides, siRNAs, miRs and antagomirs), diverse protein scaffolds, antibodies and antibody fragments is still limited. Investigating the retention and metabolism of these types of molecules in lung tissue and fluid will contribute to understanding which are best suited for inhalation. Nonetheless, the first such therapeutic molecules have already reached the clinic. This review will provide information on the physiology of healthy and diseased lungs and their capacity for drug metabolism. It will outline the stability, aggregation and immunogenicity aspects of new modalities, as well as recap on formulation and delivery aspects. It concludes by summarising clinical trial outcomes with inhaled new modalities based on information available at the end of 2021.


Subject(s)
Lung , Proteins , Administration, Inhalation , Lung/metabolism , Peptides/metabolism , Pharmaceutical Preparations/metabolism , Proteins/metabolism
5.
J Med Chem ; 65(4): 3473-3517, 2022 02 24.
Article in English | MEDLINE | ID: mdl-35108001

ABSTRACT

Upregulation of the transcription factor Nrf2 by inhibition of the interaction with its negative regulator Keap1 constitutes an opportunity for the treatment of disease caused by oxidative stress. We report a structurally unique series of nanomolar Keap1 inhibitors obtained from a natural product-derived macrocyclic lead. Initial exploration of the structure-activity relationship of the lead, followed by structure-guided optimization, resulted in a 100-fold improvement in inhibitory potency. The macrocyclic core of the nanomolar inhibitors positions three pharmacophore units for productive interactions with key residues of Keap1, including R415, R483, and Y572. Ligand optimization resulted in the displacement of a coordinated water molecule from the Keap1 binding site and a significantly altered thermodynamic profile. In addition, minor reorganizations of R415 and R483 were accompanied by major differences in affinity between ligands. This study therefore indicates the importance of accounting both for the hydration and flexibility of the Keap1 binding site when designing high-affinity ligands.


Subject(s)
Kelch-Like ECH-Associated Protein 1/antagonists & inhibitors , Macrocyclic Compounds/pharmacology , NF-E2-Related Factor 2/antagonists & inhibitors , Animals , Binding Sites , Hepatocytes/metabolism , Humans , Ligands , Microsomes, Liver/metabolism , Models, Molecular , Molecular Docking Simulation , Rats , Signal Transduction/drug effects , Structure-Activity Relationship
6.
Eur J Med Chem ; 227: 113925, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34742013

ABSTRACT

Inhibition of mucosa-associated lymphoid tissue lymphoma translocation protein-1 (MALT1) is a promising strategy to modulate NF-κB signaling, with the potential to treat B-cell lymphoma and autoimmune diseases. We describe the discovery and optimization of (1s,4s)-N,N'-diaryl cyclohexane-1,4-diamines, a novel series of allosteric MALT1 inhibitors, resulting in compound 8 with single digit micromolar cell potency. X-ray analysis confirms that this compound binds to an induced allosteric site in MALT1. Compound 8 is highly selective and has an excellent in vivo rat PK profile with low clearance and high oral bioavailability, making it a promising lead for further optimization.


Subject(s)
Cyclohexanes/pharmacology , Diamines/pharmacology , Drug Discovery , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/antagonists & inhibitors , Allosteric Regulation/drug effects , Animals , Cyclohexanes/chemical synthesis , Cyclohexanes/chemistry , Diamines/chemical synthesis , Diamines/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Structure , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/metabolism , Rats , Structure-Activity Relationship
7.
J Med Chem ; 64(12): 8545-8563, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34110134

ABSTRACT

Aromatic and heteroaromatic amines (ArNH2) are activated by cytochrome P450 monooxygenases, primarily CYP1A2, into reactive N-arylhydroxylamines that can lead to covalent adducts with DNA nucleobases. Hereby, we give hands-on mechanism-based guidelines to design mutagenicity-free ArNH2. The mechanism of N-hydroxylation of ArNH2 by CYP1A2 is investigated by density functional theory (DFT) calculations. Two putative pathways are considered, the radicaloid route that goes via the classical ferryl-oxo oxidant and an alternative anionic pathway through Fenton-like oxidation by ferriheme-bound H2O2. Results suggest that bioactivation of ArNH2 follows the anionic pathway. We demonstrate that H-bonding and/or geometric fit of ArNH2 to CYP1A2 as well as feasibility of both proton abstraction by the ferriheme-peroxo base and heterolytic cleavage of arylhydroxylamines render molecules mutagenic. Mutagenicity of ArNH2 can be removed by structural alterations that disrupt geometric and/or electrostatic fit to CYP1A2, decrease the acidity of the NH2 group, destabilize arylnitrenium ions, or disrupt their pre-covalent transition states with guanine.


Subject(s)
Amines/metabolism , Cytochrome P-450 CYP1A2/metabolism , Heterocyclic Compounds/metabolism , Hydrocarbons, Aromatic/metabolism , Mutagens/metabolism , Amines/chemistry , Catalytic Domain , Crystallography, X-Ray , Cytochrome P-450 CYP1A2/chemistry , Density Functional Theory , Discriminant Analysis , Heterocyclic Compounds/chemistry , Humans , Hydrocarbons, Aromatic/chemistry , Hydroxylation , Least-Squares Analysis , Models, Chemical , Molecular Structure , Mutagens/chemistry , Protein Binding
8.
ACS Med Chem Lett ; 12(6): 983-990, 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34136079

ABSTRACT

Conformation-dependent 3D descriptors have been shown to provide better predictions of the physicochemical properties of macrocycles than 2D descriptors. However, the computational identification of relevant conformations for macrocycles is nontrivial. Herein, we report that the Caco-2 cell permeability difference between a pair of diastereomeric macrocycles correlated with their solvent accessible 3D polar surface area and radius of gyration. The descriptors were calculated from the macrocycles' solution-phase conformational ensembles and independently from ensembles obtained by conformational sampling. Calculation of the two descriptors for three other stereo- and regioisomeric macrocycles also allowed the correct ranking of their cell permeability. Methods for conformational sampling may thus allow ranking of passive permeability for moderately flexible macrocycles, thereby contributing to the prioritization of macrocycles for synthesis in lead optimization.

10.
J Med Chem ; 64(2): 1054-1072, 2021 01 28.
Article in English | MEDLINE | ID: mdl-33337880

ABSTRACT

Lead generation for difficult-to-drug targets that have large, featureless, and highly lipophilic or highly polar and/or flexible binding sites is highly challenging. Here, we describe how cores of macrocyclic natural products can serve as a high-quality in silico screening library that provides leads for difficult-to-drug targets. Two iterative rounds of docking of a carefully selected set of natural-product-derived cores led to the discovery of an uncharged macrocyclic inhibitor of the Keap1-Nrf2 protein-protein interaction, a particularly challenging target due to its highly polar binding site. The inhibitor displays cellular efficacy and is well-positioned for further optimization based on the structure of its complex with Keap1 and synthetic access. We believe that our work will spur interest in using macrocyclic cores for in silico-based lead generation and also inspire the design of future macrocycle screening collections.


Subject(s)
Biological Products/chemistry , Polycyclic Compounds/chemical synthesis , Polycyclic Compounds/pharmacology , Computer Simulation , Data Mining , Databases, Factual , Drug Discovery , Drug Evaluation, Preclinical , Humans , Kelch-Like ECH-Associated Protein 1/antagonists & inhibitors , Kelch-Like ECH-Associated Protein 1/chemistry , Microsomes, Liver , Models, Molecular , Molecular Docking Simulation , NF-E2-Related Factor 2 , Polycyclic Compounds/chemistry , Solubility , Structure-Activity Relationship
11.
J Med Chem ; 63(21): 13076-13089, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33112606

ABSTRACT

Introducing trifluoromethyl groups is a common strategy to improve the properties of biologically active compounds. However, N-trifluoromethyl moieties on amines and azoles are very rarely used. To evaluate their suitability in drug design, we synthesized a series of N-trifluoromethyl amines and azoles, determined their stability in aqueous media, and investigated their properties. We show that N-trifluoromethyl amines are prone to hydrolysis, whereas N-trifluoromethyl azoles have excellent aqueous stability. Compared to their N-methyl analogues, N-trifluoromethyl azoles have a higher lipophilicity and can show increased metabolic stability and Caco-2 permeability. Furthermore, N-trifluoromethyl azoles can serve as bioisosteres of N-iso-propyl and N-tert-butyl azoles. Consequently, we suggest that N-trifluoromethyl azoles are valuable substructures to be considered in medicinal chemistry.


Subject(s)
Amines/chemistry , Azoles/chemistry , Fluorine/chemistry , Amines/chemical synthesis , Amines/pharmacokinetics , Azoles/chemical synthesis , Azoles/pharmacokinetics , Caco-2 Cells , Drug Design , Drug Stability , Glutathione/chemistry , Half-Life , Humans , Hydrogen-Ion Concentration
12.
Org Lett ; 20(18): 5737-5742, 2018 09 21.
Article in English | MEDLINE | ID: mdl-30207734

ABSTRACT

A series of macrocycles inspired by natural products were synthesized to investigate how side-chains may shield amide bonds and influence cell permeability. NMR spectroscopy and X-ray crystallography revealed that the phenyl group of phenylalanine, but not the side-chains of homologous or aliphatic amino acids, shields the adjacent amide bond through an intramolecular NH-π interaction. This resulted in increased cell permeability, suggesting that NH-π interactions may be used in the design of molecular chameleons.


Subject(s)
Amides/chemistry , Macrocyclic Compounds/pharmacology , Permeability/drug effects , Animals , Crystallography, X-Ray , Lizards , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/chemistry , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure
13.
Org Biomol Chem ; 16(2): 202-207, 2018 01 03.
Article in English | MEDLINE | ID: mdl-29243756

ABSTRACT

The highly convergent total synthesis of dimeric diketopiperazine alkaloids (+)-asperazine A and (+)-pestalazine B is described. A critical aspect of our expedient route was the development of a directed regio- and diastereoselective C3-N1' coupling of complex tetracyclic diketopiperazine components. This late-stage heterodimerization reaction was made possible by design of tetracyclic diketopiperazines that allow C3-carbocation coupling of the electrophilic component to the N1' locus of the nucleophilic fragment. The application of this new coupling reaction to the first total synthesis of (+)-asperazine A led to our revision of the sign and magnitude of the optical rotation for the reported structure.


Subject(s)
Diketopiperazines/chemical synthesis , Indole Alkaloids/chemical synthesis , Alkaloids/chemical synthesis , Chemistry Techniques, Synthetic/methods , Dimerization , Stereoisomerism
14.
Chemistry ; 22(43): 15350-15359, 2016 Oct 17.
Article in English | MEDLINE | ID: mdl-27608298

ABSTRACT

Structural features and internal dynamics of inosine-containing RNAs are poorly understood. NMR studies of such RNAs require 13 C,15 N-labeling, which cannot be achieved using in vitro transcription as inosine and guanosine are not distinguished by RNA polymerase. Herein, we report the synthesis of an inosine phosphoramidite with selective 13 C8 and 15 N7-isotope incorporation in the base and uniform 13 C-labeling of the ribose. Chemical synthesis of an RNA duplex containing four consecutive IU base pairs with this optimized isotope-labeling scheme greatly simplifies NMR spectra and resolves signal overlap. The absence of detectable NMR signals of imino protons and unusual inter-residue NOE correlations in this RNA indicate deviations from standard A-form geometry, consistent with reduced stability of this duplex seen in UV melting studies compared to its nonedited RNA counterparts. These studies indicate that the introduction of IU base pairs distorts and destabilizes RNA helices significantly compared to the also noncanonical GU base-pairs. Our optimized isotope-labeling scheme enables high-resolution NMR studies of inosine-edited RNAs.


Subject(s)
Guanosine/chemistry , Inosine/chemistry , Isotope Labeling , Organophosphorus Compounds/chemistry , RNA/chemistry , Ribose/chemistry , Base Pairing , Magnetic Resonance Spectroscopy , Nuclear Magnetic Resonance, Biomolecular , Protons
15.
Nat Commun ; 5: 5437, 2014 Nov 25.
Article in English | MEDLINE | ID: mdl-25421715

ABSTRACT

Cells cope with replication-blocking lesions via translesion DNA synthesis (TLS). TLS is carried out by low-fidelity DNA polymerases that replicate across lesions, thereby preventing genome instability at the cost of increased point mutations. Here we perform a two-stage siRNA-based functional screen for mammalian TLS genes and identify 17 validated TLS genes. One of the genes, NPM1, is frequently mutated in acute myeloid leukaemia (AML). We show that NPM1 (nucleophosmin) regulates TLS via interaction with the catalytic core of DNA polymerase-η (polη), and that NPM1 deficiency causes a TLS defect due to proteasomal degradation of polη. Moreover, the prevalent NPM1c+ mutation that causes NPM1 mislocalization in ~30% of AML patients results in excessive degradation of polη. These results establish the role of NPM1 as a key TLS regulator, and suggest a mechanism for the better prognosis of AML patients carrying mutations in NPM1.


Subject(s)
DNA Damage , DNA Replication , Leukemia, Myeloid, Acute/metabolism , Nuclear Proteins/metabolism , Cell Line , DNA Damage/radiation effects , DNA Repair , DNA Replication/radiation effects , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , Humans , Leukemia, Myeloid, Acute/enzymology , Leukemia, Myeloid, Acute/genetics , Nuclear Proteins/genetics , Nucleophosmin , Protein Binding , Ultraviolet Rays
16.
Nat Chem Biol ; 10(7): 574-81, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24838012

ABSTRACT

Ten eleven translocation (Tet) enzymes oxidize the epigenetically important DNA base 5-methylcytosine (mC) stepwise to 5-hydroxymethylcytosine (hmC), 5-formylcytosine and 5-carboxycytosine. It is currently unknown whether Tet-induced oxidation is limited to cytosine-derived nucleobases or whether other nucleobases are oxidized as well. We synthesized isotopologs of all major oxidized pyrimidine and purine bases and performed quantitative MS to show that Tet-induced oxidation is not limited to mC but that thymine is also a substrate that gives 5-hydroxymethyluracil (hmU) in mouse embryonic stem cells (mESCs). Using MS-based isotope tracing, we show that deamination of hmC does not contribute to the steady-state levels of hmU in mESCs. Protein pull-down experiments in combination with peptide tracing identifies hmU as a base that influences binding of chromatin remodeling proteins and transcription factors, suggesting that hmU has a specific function in stem cells besides triggering DNA repair.


Subject(s)
DNA-Binding Proteins/metabolism , DNA/metabolism , Embryonic Stem Cells/metabolism , Pentoxyl/analogs & derivatives , Proto-Oncogene Proteins/metabolism , Thymine/metabolism , 5-Methylcytosine/analogs & derivatives , Animals , Base Sequence , Carbon Isotopes , Chromatin Assembly and Disassembly , Chromatography, Liquid , Cytosine/analogs & derivatives , Cytosine/metabolism , DNA-Binding Proteins/genetics , Dioxygenases , Embryonic Stem Cells/cytology , Gene Expression , Mice , Molecular Sequence Data , Oxidation-Reduction , Pentoxyl/metabolism , Protein Binding , Proto-Oncogene Proteins/genetics , Spectrometry, Mass, Electrospray Ionization , Transcription Factors/genetics , Transcription Factors/metabolism
17.
Angew Chem Int Ed Engl ; 53(1): 315-8, 2014 Jan 03.
Article in English | MEDLINE | ID: mdl-24281791

ABSTRACT

A 5-formyl-2'-deoxycytidine (fdC) phosphoramidite building block that enables the synthesis of fdC-containing DNA with excellent purity and yield has been developed. In combination with phosphoramidites for 5-methyl-dC, 5-hydroxymethyl-dC, and carboxy-dC, it was possible to prepare a segment of the OCT-4 promoter that contains all four epigenetic bases. Because of the enormous interest in these new epigenetic bases, the ability to insert all four of them into DNA should be of great value for the scientific community.


Subject(s)
DNA/chemical synthesis , Deoxycytidine/analogs & derivatives , Nucleosides/genetics , Deoxycytidine/chemical synthesis , Epigenesis, Genetic , Molecular Structure
18.
J Am Chem Soc ; 135(39): 14593-9, 2013 Oct 02.
Article in English | MEDLINE | ID: mdl-23980549

ABSTRACT

Three new cytosine derived DNA modifications, 5-hydroxymethyl-2'-deoxycytidine (hmdC), 5-formyl-2'-deoxycytidine (fdC) and 5-carboxy-2'-deoxycytidine (cadC) were recently discovered in mammalian DNA, particularly in stem cell DNA. Their function is currently not clear, but it is assumed that in stem cells they might be intermediates of an active demethylation process. This process may involve base excision repair, C-C bond cleaving reactions or deamination of hmdC to 5-hydroxymethyl-2'-deoxyuridine (hmdU). Here we report chemical studies that enlighten the chemical reactivity of the new cytosine nucleobases. We investigated their sensitivity toward oxidation and deamination and we studied the C-C bond cleaving reactivity of hmdC, fdC, and cadC in the absence and presence of thiols as biologically relevant (organo)catalysts. We show that hmdC is in comparison to mdC rapidly oxidized to fdC already in the presence of air. In contrast, deamination reactions were found to occur only to a minor extent. The C-C bond cleavage reactions require the presence of high concentration of thiols and are acid catalyzed. While hmdC dehydroxymethylates very slowly, fdC and especially cadC react considerably faster to dC. Thiols are active site residues in many DNA modifiying enzymes indicating that such enzymes could play a role in an alternative active DNA demethylation mechanism via deformylation of fdC or decarboxylation of cadC. Quantum-chemical calculations support the catalytic influence of a thiol on the C-C bond cleavage.


Subject(s)
Cytosine/analogs & derivatives , Sulfhydryl Compounds/chemistry , 5-Methylcytosine/analogs & derivatives , Carboxylic Acids/chemistry , Cytosine/chemistry , Deamination , Oxidation-Reduction
19.
Org Lett ; 15(2): 366-9, 2013 Jan 18.
Article in English | MEDLINE | ID: mdl-23286330

ABSTRACT

The synthesis of the triphosphates of 5-hydroxymethyl-, 5-formyl-, and 5-carboxycytidine and the incorporation of these building blocks into long DNA fragments using the polymerase chain reaction (PCR) are reported. In this way DNA fragments containing multiple hmC, fC, and caC nucleobases are readily accessible.


Subject(s)
DNA/chemistry , Oligonucleotides/chemical synthesis , Molecular Structure , Oligonucleotides/chemistry , Polymerase Chain Reaction , Polyphosphates/chemistry
20.
Angew Chem Int Ed Engl ; 51(26): 6516-20, 2012 Jun 25.
Article in English | MEDLINE | ID: mdl-22644704

ABSTRACT

Eraserhead: Stem cells seem to erase epigenetic information by decarboxylation of the newly discovered epigenetic base 5-carboxycytosine (caC; see picture). This reaction is likely to involve a nucleophilic attack of the C5-C6 double bond.


Subject(s)
Cytosine/analogs & derivatives , Embryonic Stem Cells/chemistry , Animals , Base Sequence , Cytosine/chemistry , Cytosine/metabolism , DNA/chemistry , Decarboxylation , Embryonic Stem Cells/metabolism , Mice , Nitrogen Isotopes/chemistry , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...