Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag Res ; 32(11): 1094-102, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25341873

ABSTRACT

Urban water and waste management continues to be a major challenge, with the Earth's population projected to rise to 9 billion by 2050, with 70% of this population expected to live in cities. A combined treatment of wastewater and the organic fraction of municipal solid waste offers opportunities for improved environmental protection and energy recovery, but the collection and transport of organic wastes must be cost effective. This study compares three alternative kitchen waste collection and transportation systems for a virtual modern urban area with 300,000 residents and a population density of 10,000 persons per square kilometre. Door-to-door collection, being the standard practice in modern urban centres, remains the most economically advantageous at a cost of 263 euros per tonne of kitchen waste. Important drawbacks are the difficult logistics, increased city traffic, air and noise pollution. The quieter, cleaner and more hygienic vacuum transport of kitchen waste comes with a higher cost of 367 euros per tonne, mainly resulting from a higher initial investment cost for the system installation. The third option includes the well-known use of under-sink food waste disposers (often called garbage grinders) that are connected to the kitchen's wastewater piping system, with a total yearly cost of 392 euros per tonne. Important advantages with this system are the clean operation and the current availability of a city-wide sewage conveyance pipeline system. Further research is recommended, for instance the application of a life cycle assessment approach, to more fully compare the advantages and disadvantages of each option.


Subject(s)
Conservation of Natural Resources , Costs and Cost Analysis , Refuse Disposal/economics , Refuse Disposal/methods , Waste Disposal, Fluid/economics , Waste Disposal, Fluid/methods , Cities , Humans , Transportation/economics , Transportation/methods
2.
Bioresour Technol ; 145: 240-7, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23333084

ABSTRACT

The artificial ecosystem MELiSSA, supported by the European Space Agency is a closed loop system consisting of 5 compartments in which food, water and oxygen are produced out of organic waste. The first compartment is conceived as a thermophilic anaerobic membrane bioreactor liquefying organic waste into VFAs, ammonium and CO2 without methane. A 20 L reactor was assembled to demonstrate the selected design and process at prototype scale. We characterized system performance from start-up to steady state and evaluated process efficiencies with special attention drawn to the mass balances. An overall efficiency for organic matter biodegradation of 50% was achieved. The dry matter content was stabilized around 40-50 g L(-1) and VFA production around 5-6 g L(-1). The results were consistent for the considered substrate mixture and can also be considered relevant in a broader context, as a first processing step to produce building blocks for synthesis of primary energy vectors.


Subject(s)
Ammonia/metabolism , Bioreactors , Biotechnology/methods , Carbon Dioxide/metabolism , Environment, Controlled , Fatty Acids, Volatile/biosynthesis , Anaerobiosis , Biodegradation, Environmental , Chromatography, Gas , Membranes, Artificial
SELECTION OF CITATIONS
SEARCH DETAIL
...