Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 94(8)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-38065142

ABSTRACT

During deposition, modification, and etching of thin films and nanomaterials in reactive plasmas, many active species can interact with the sample simultaneously. This includes reactive neutrals formed by fragmentation of the feed gas, positive ions, and electrons generated by electron-impact ionization of the feed gas and fragments, excited states (in particular, long-lived metastable species), and photons produced by spontaneous de-excitation of excited atoms and molecules. Notably, some of these species can be transiently present during the different phases of plasma processing, such as etching of thin layer deposition. To monitor plasma-surface interactions during materials processing, a new system combining beams of neutral atoms, positive ions, UV photons, and a magnetron plasma source has been developed. This system is equipped with a unique ensemble of in-plasma surface characterization tools, including (1) a Rutherford Backscattering Spectrometer (RBS), (2) an Elastic Recoil Detector (ERD), and (3) a Raman spectroscopy system. RBS and ERD analyses are carried out using a differentially pumped 1.7 MV ion beam line Tandetron accelerator generating a beam at grazing incidence. The ERD system is equipped with an absorber and is specifically used to detect H initially bonded to the surface; higher resolution of surface H is also available through nuclear reaction analysis. In parallel, an optical port facing the substrate is used to perform Raman spectroscopy analysis of the samples during plasma processing. This system enables fast monitoring of a few Raman peaks over nine points scattered on a 1.6 × 1.6 mm2 surface without interference from the inherent light emitted by the plasma. Coupled to the various plasma and beam sources, the unique set of in-plasma surface characterization tools detailed in this study can provide unique time-resolved information on the modification induced by plasma. By using the ion beam analysis capability, the atomic concentrations of various elements in the near-surface (e.g., stoichiometry and impurity content) can be monitored in real-time during plasma deposition or etching. On the other hand, the evolution of Raman peaks as a function of plasma processing time can contribute to a better understanding of the role of low-energy ions in defect generation in irradiation-sensitive materials, such as monolayer graphene.

2.
Rev Sci Instrum ; 91(10): 103303, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33138598

ABSTRACT

We report on the cross-calibration of Thomson Parabola (TP) and Time-of-Flight (TOF) detectors as particle diagnostics, implemented on the most recent setup of the ALLS 100 TW laser-driven ion acceleration beamline. The Microchannel Plate (MCP) used for particle detection in the TP spectrometer has been calibrated in intensity on the tandem linear accelerator at the Université de Montréal. The experimental data points of the scaling factor were obtained by performing a pixel cluster analysis of single proton impacts on the MCP. A semi-empirical model was extrapolated and fitted to the data to apply the calibration also to higher kinetic energies and to extend it to other ion species. Two TOF lines using diamond detectors, placed at +6° and -9° with respect to the target-normal axis, were benchmarked against the TP spectrometer measurements to determine the field integrals related to its electric and magnetic dispersions. The mean integral proton numbers obtained on the beamline were about 4.1 × 1011 protons/sr with a standard deviation of 15% in the central section of the spectrum around 3 MeV, hence witnessing the high repeatability of the proton bunch generation. The mean maximum energy was of 7.3 ± 0.5 MeV, well in agreement with similar other 100 TW-scale laser facilities, with the best shots reaching 9 MeV and nearly 1012 protons/sr. The used particle diagnostics are compatible with the development of a high-repetition rate targetry due to their fast online readout and are therefore a crucial step in the automation of any beamline.

3.
Phys Rev Lett ; 123(4): 045501, 2019 Jul 26.
Article in English | MEDLINE | ID: mdl-31491265

ABSTRACT

Understanding the local atomic order in amorphous thin film coatings and how it relates to macroscopic performance factors, such as mechanical loss, provides an important path towards enabling the accelerated discovery and development of improved coatings. High precision x-ray scattering measurements of thin films of amorphous zirconia-doped tantala (ZrO_{2}-Ta_{2}O_{5}) show systematic changes in intermediate range order (IRO) as a function of postdeposition heat treatment (annealing). Atomic modeling captures and explains these changes, and shows that the material has building blocks of metal-centered polyhedra and the effect of annealing is to alter the connections between the polyhedra. The observed changes in IRO are associated with a shift in the ratio of corner-sharing to edge-sharing polyhedra. These changes correlate with changes in mechanical loss upon annealing, and suggest that the mechanical loss can be reduced by developing a material with a designed ratio of corner-sharing to edge-sharing polyhedra.

4.
Rev Sci Instrum ; 90(8): 083301, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31472601

ABSTRACT

In this work, we calibrate the newly developed EBT-XD radiochromic films (RCFs) manufactured by Gafchromictm using protons in the energy range of 4-10 MeV. Irradiation was performed on the 2 × 6 MV tandem linear accelerator located at the Université de Montréal. The RCFs were digitized using an Epson Perfection V700 flatbed scanner using both the red-green-blue and grayscale channels. The proton fluences were measured with Faraday cups calibrated in absolute terms. The linear energy transfer function within the active layer of the films was calculated using the mass stopping power tables coming from the PSTAR database from the National Institute of Standards and Technology (NIST) to allow retrieval of the deposited dose. We find that the calibration curves for 7 and 10 MeV protons are nearly equivalent. The 4 MeV calibration curves exhibit a quenching effect due to the Bragg peak that falls close to the active layer. A linearization of this energy dependence was developed using a semiempirical parametric model to allow the generation of calibration curves for any incident proton energy within the present range. Excellent correspondence (<5% dose difference for the same netOD) of the 10 MeV calibration curves was noted when compared to existing high-energy proton (148.2 MeV) calibration curves reported in the literature. Our calibration extends the range of operation of EBT-XD films to low-energy proton beam dosimetry.

5.
Phys Rev Lett ; 85(17): 3560-3, 2000 Oct 23.
Article in English | MEDLINE | ID: mdl-11030950

ABSTRACT

We report a study of the thermodynamic properties of indium clusters on a SiN (x) surface during the early stages of thin film growth using a sensitive nanocalorimetry technique. The measurements reveal the presence of abnormal discontinuities in the heat of melting below 100 degrees C. These discontinuities, for which temperature separation corresponds to a spatial periodicity equal to the thickness of an indium monolayer, are found to be related to the atomic "magic numbers," i.e., the number of atoms necessary to form a complete shell of atoms at particle surface.

SELECTION OF CITATIONS
SEARCH DETAIL
...