Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Radiol ; 96(1149): 20230110, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37493227

ABSTRACT

OBJECTIVE: Several studies have shown that dual-energy CT (DECT) can lead to improved accuracy for proton range estimation. This study investigated the clinical benefit of reduced range uncertainty, enabled by DECT, in robust optimisation for neuro-oncological patients. METHODS: DECT scans for 27 neuro-oncological patients were included. Commercial software was applied to create stopping-power ratio (SPR) maps based on the DECT scan. Two plans were robustly optimised on the SPR map, keeping the beam and plan settings identical to the clinical plan. One plan was robustly optimised and evaluated with a range uncertainty of 3% (as used clinically; denoted 3%-plan); the second plan applied a range uncertainty of 2% (2%-plan). Both plans were clinical acceptable and optimal. The dose-volume histogram parameters were compared between the two plans. Two experienced neuro-radiation oncologists determined the relevant dose difference for each organ-at-risk (OAR). Moreover, the OAR toxicity levels were assessed. RESULTS: For 24 patients, a dose reduction >0.5/1 Gy (relevant dose difference depending on the OAR) was seen in one or more OARs for the 2%-plan; e.g. for brainstem D0.03cc in 10 patients, and hippocampus D40% in 6 patients. Furthermore, 12 patients had a reduction in toxicity level for one or two OARs, showing a clear benefit for the patient. CONCLUSION: Robust optimisation with reduced range uncertainty allows for reduction of OAR toxicity, providing a rationale for clinical implementation. Based on these results, we have clinically introduced DECT-based proton treatment planning for neuro-oncological patients, accompanied with a reduced range uncertainty of 2%. ADVANCES IN KNOWLEDGE: This study shows the clinical benefit of range uncertainty reduction from 3% to 2% in robustly optimised proton plans. A dose reduction to one or more OARs was seen for 89% of the patients, and 44% of the patients had an expected toxicity level decrease.


Subject(s)
Proton Therapy , Protons , Humans , Proton Therapy/methods , Uncertainty , Tomography, X-Ray Computed/methods , Radiotherapy Planning, Computer-Assisted/methods
2.
Strahlenther Onkol ; 194(6): 560-569, 2018 06.
Article in English | MEDLINE | ID: mdl-29349605

ABSTRACT

INTRODUCTION: In large brain metastases (BM) with a diameter of more than 2 cm there is an increased risk of radionecrosis (RN) with standard stereotactic radiosurgery (SRS) dose prescription, while the normal tissue constraint is exceeded. The tumor control probability (TCP) with a single dose of 15 Gy is only 42%. This in silico study tests the hypothesis that isotoxic dose prescription (IDP) can increase the therapeutic ratio (TCP/Risk of RN) of SRS in large BM. MATERIALS AND METHODS: A treatment-planning study with 8 perfectly spherical and 46 clinically realistic gross tumor volumes (GTV) was conducted. The effects of GTV size (0.5-4 cm diameter), set-up margins (0, 1, and 2 mm), and beam arrangements (coplanar vs non-coplanar) on the predicted TCP using IDP were assessed. For single-, three-, and five-fraction IDP dose-volume constraints of V12Gy = 10 cm3, V19.2 Gy = 10 cm3, and a V20Gy = 20 cm3, respectively, were used to maintain a low risk of radionecrosis. RESULTS: In BM of 4 cm in diameter, the maximum achievable single-fraction IDP dose was 14 Gy compared to 15 Gy for standard SRS dose prescription, with respective TCPs of 32 and 42%. Fractionated SRS with IDP was needed to improve the TCP. For three- and five-fraction IDP, a maximum predicted TCP of 55 and 68% was achieved respectively (non-coplanar beams and a 1 mm GTV-PTV margin). CONCLUSIONS: Using three-fraction or five-fraction IDP the predicted TCP can be increased safely to 55 and 68%, respectively, in large BM with a diameter of 4 cm with a low risk of RN. Using IDP, the therapeutic ratio of SRS in large BM can be increased compared to current SRS dose prescription.


Subject(s)
Brain Neoplasms/secondary , Brain Neoplasms/surgery , Computer Simulation , Precision Medicine , Radiosurgery/methods , Radiotherapy Dosage , Dose Fractionation, Radiation , Radiotherapy Planning, Computer-Assisted , Tomography, X-Ray Computed , Tumor Burden/physiology
3.
Radiother Oncol ; 77(1): 5-10, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16019093

ABSTRACT

BACKGROUND AND PURPOSE: To investigate the effect of radiotherapy planning with a dedicated combined PET-CT simulator of patients with locally advanced non-small cell lung cancer. PATIENTS AND METHODS: Twenty-one patients underwent a pre-treatment simulation on a dedicated hybrid PET-CT-simulator. For each patient, two 3D conformal treatment plans were made: one with a CT based PTV and one with a PET-CT based PTV, both to deliver 60Gy in 30 fractions. The maximum tolerable prescribed radiation dose for CT versus PET-CT PTV was calculated based on constraints for the lung, the oesophagus, and the spinal cord, and the Tumour Control Probability (TCP) was estimated. RESULTS: For the same toxicity levels of the lung, oesophagus and spinal cord, the dose could be increased from 55.2+/-2.0Gy with CT planning to 68.9+/-3.3Gy with the use of PET-CT (P=0.002), with corresponding TCP's of 6.3+/-1.5% for CT and 24.0+/-5.6% for PET-CT planning (P=0.01). CONCLUSIONS: The use of a combined dedicated PET-CT-simulator reduced radiation exposure of the oesophagus and the lung, and thus allowed significant radiation dose escalation whilst respecting all relevant normal tissue constraints.


Subject(s)
Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Lung Neoplasms/diagnostic imaging , Positron-Emission Tomography , Radiotherapy, Conformal/methods , Carcinoma, Non-Small-Cell Lung/radiotherapy , Dose-Response Relationship, Radiation , Esophagitis/prevention & control , Humans , Lung Neoplasms/radiotherapy , Neoplasm Staging/methods , Radiation Injuries/prevention & control , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...