Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther Oncol ; 32(1): 200758, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38596304

ABSTRACT

Oncolytic viruses are engineered to selectively kill tumor cells and have demonstrated promising results in early-phase clinical trials. To further modulate the innate and adaptive immune system, we generated AZD4820, a vaccinia virus engineered to express interleukin-12 (IL-12), a potent cytokine involved in the activation of natural killer (NK) and T cells and the reprogramming of the tumor immune microenvironment. Testing in cultured human tumor cell lines demonstrated broad in vitro oncolytic activity and IL-12 transgene expression. A surrogate virus expressing murine IL-12 demonstrated antitumor activity in both MC38 and CT26 mouse syngeneic tumor models that responded poorly to immune checkpoint inhibition. In both models, AZD4820 significantly upregulated interferon-gamma (IFN-γ) relative to control mice treated with oncolytic vaccinia virus (VACV)-luciferase. In the CT26 study, 6 of 10 mice had a complete response after treatment with AZD4820 murine surrogate, whereas control VACV-luciferase-treated mice had 0 of 10 complete responders. AZD4820 treatment combined with anti-PD-L1 blocking antibody augmented tumor-specific T cell immunity relative to monotherapies. These findings suggest that vaccinia virus delivery of IL-12, combined with immune checkpoint blockade, elicits antitumor immunity in tumors that respond poorly to immune checkpoint inhibitors.

2.
Cytotherapy ; 24(7): 720-732, 2022 07.
Article in English | MEDLINE | ID: mdl-35570170

ABSTRACT

BACKGROUND: Chimeric antigen receptor (CAR) T cell therapy has yielded impressive clinical results in hematological malignancies and is a promising approach for solid tumor treatment. However, toxicity, including cytokine-release syndrome (CRS) and neurotoxicity, is a concern hampering its broader use. METHODS: In selecting a lead CAR-T candidate against the oncofetal antigen glypican 3 (GPC3), we compared CARs bearing a low- and high-affinity single-chain variable fragment (scFv) binding to a similar epitope and cross-reactive with murine GPC3. RESULTS: Where the high-affinity CAR-T cells were toxic in vivo, the low-affinity CAR maintained cytotoxic function against antigen-positive tumor cells but did not show toxicity against normal tissues. High-affinity CAR-induced toxicity was caused by on-target, off-tumor binding, based on the observation that higher doses of the high-affinity CAR-T caused toxicity in non-tumor-bearing mice and accumulated in organs with low expression of GPC3. To explore another layer of controlling CAR-T toxicity, we developed a means to target and eliminate CAR-T cells using anti-TNF-α antibody therapy after CAR-T infusion. The antibody was shown to function by eliminating early antigen-activated, but not all, CAR-T cells, allowing a margin where the toxic response could be effectively decoupled from antitumor efficacy with only a minor loss in tumor control. By exploring additional traits of the CAR-T cells after activation, we identified a mechanism whereby we could use approved therapeutics and apply them as an exogenous kill switch that eliminated early activated CAR-T following antigen engagement in vivo. CONCLUSIONS: By combining the reduced-affinity CAR with this exogenous control mechanism, we provide evidence that we can modulate and control CAR-mediated toxicity.


Subject(s)
Glypicans , Receptors, Chimeric Antigen , Animals , Cell Line, Tumor , Glypicans/metabolism , Immunotherapy, Adoptive/methods , Mice , Receptors, Antigen, T-Cell , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes , Tumor Necrosis Factor Inhibitors , Xenograft Model Antitumor Assays
3.
Nat Commun ; 10(1): 5167, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31727888

ABSTRACT

BRAF and MEK1/2 inhibitors are effective in melanoma but resistance inevitably develops. Despite increasing the abundance of pro-apoptotic BIM and BMF, ERK1/2 pathway inhibition is predominantly cytostatic, reflecting residual pro-survival BCL2 family activity. Here, we show that uniquely low BCL-XL expression in melanoma biases the pro-survival pool towards MCL1. Consequently, BRAF or MEK1/2 inhibitors are synthetic lethal with the MCL1 inhibitor AZD5991, driving profound tumour cell death that requires BAK/BAX, BIM and BMF, and inhibiting tumour growth in vivo. Combination of ERK1/2 pathway inhibitors with BCL2/BCL-w/BCL-XL inhibitors is stronger in CRC, correlating with a low MCL1:BCL-XL ratio; indeed the MCL1:BCL-XL ratio is predictive of ERK1/2 pathway inhibitor synergy with MCL1 or BCL2/BCL-w/BCL-XL inhibitors. Finally, AZD5991 delays acquired BRAFi/MEKi resistance and enhances the efficacy of an ERK1/2 inhibitor in a model of acquired BRAFi + MEKi resistance. Thus combining ERK1/2 pathway inhibitors with MCL1 antagonists in melanoma could improve therapeutic index and patient outcomes.


Subject(s)
Apoptosis , MAP Kinase Signaling System , Melanoma/pathology , Molecular Targeted Therapy , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Animals , Cell Line, Tumor , Cell Survival/drug effects , Drug Resistance, Neoplasm/drug effects , Humans , MAP Kinase Signaling System/drug effects , Macrocyclic Compounds/pharmacology , Mice , Proto-Oncogene Proteins B-raf/metabolism , bcl-X Protein/metabolism
4.
Mol Cancer Ther ; 17(10): 2176-2186, 2018 10.
Article in English | MEDLINE | ID: mdl-30065100

ABSTRACT

Prostate-specific membrane antigen (PSMA) is a membrane-bound glutamate carboxypeptidase that is highly expressed in nearly all prostate cancers with the highest expression in metastatic castration-resistant prostate cancer (mCRPC). The prevalence of increased surface expression and constitutive internalization of PSMA make it an attractive target for an antibody-drug conjugate (ADC) approach to treating patients with mCRPC. MEDI3726 (previously known as ADCT-401) is an ADC consisting of an engineered version of the anti-PSMA antibody J591 site specifically conjugated to the pyrrolobenzodiazepine (PBD) dimer tesirine. MEDI3726 specifically binds the extracellular domain of PSMA and, once internalized, releases the PBD dimer to crosslink DNA and trigger cell death. In vitro, MEDI3726 demonstrated potent and specific cytotoxicity in a panel of PSMA-positive prostate cancer cell lines, consistent with internalization and DNA interstrand crosslinking. In vivo, MEDI3726 showed robust antitumor activity against the LNCaP and the castration-resistant CWR22Rv1 prostate cancer cell line xenografts. MEDI3726 also demonstrated durable antitumor activity in the PSMA-positive human prostate cancer patient-derived xenograft (PDX) LuCaP models. This activity correlated with increased phosphorylated Histone H2AX in tumor xenografts treated with MEDI3726. MEDI3726 is being evaluated in a phase I clinical trial as a treatment for patients with metastatic castrate-resistant prostate cancer (NCT02991911). Mol Cancer Ther; 17(10); 2176-86. ©2018 AACR.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , Biomarkers, Tumor/antagonists & inhibitors , Glutamate Carboxypeptidase II/antagonists & inhibitors , Immunoconjugates/pharmacology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/immunology , Animals , Antigens, Surface/genetics , Antigens, Surface/metabolism , Cell Line, Tumor , Cross Reactions/immunology , Disease Models, Animal , Drug Evaluation, Preclinical , Gene Expression , Glutamate Carboxypeptidase II/genetics , Glutamate Carboxypeptidase II/metabolism , Humans , Immunohistochemistry , Macaca fascicularis , Male , Mice , Prostatic Neoplasms/pathology , Xenograft Model Antitumor Assays
5.
Lupus Sci Med ; 5(1): e000261, 2018.
Article in English | MEDLINE | ID: mdl-29644082

ABSTRACT

OBJECTIVE: We investigated the mechanistic and pharmacological properties of anifrolumab, a fully human, effector-null, anti-type I interferon (IFN) alpha receptor 1 (IFNAR1) monoclonal antibody in development for SLE. METHODS: IFNAR1 surface expression and internalisation on human monocytes before and after exposure to anifrolumab were assessed using confocal microscopy and flow cytometry. The effects of anifrolumab on type I IFN pathway activation were assessed using signal transducer and activator of transcription 1 (STAT1) phosphorylation, IFN-stimulated response element-luciferase reporter cell assays and type I IFN gene signature induction. The ability of anifrolumab to inhibit plasmacytoid dendritic cell (pDC) function and plasma cell differentiation was assessed by flow cytometry and ELISA. Effector-null properties of anifrolumab were assessed in antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) assays with B cells. RESULTS: Anifrolumab reduced cell surface IFNAR1 by eliciting IFNAR1 internalisation. Anifrolumab blocked type I IFN-dependent STAT1 phosphorylation and IFN-dependent signalling induced by recombinant and pDC-derived type I IFNs and serum of patients with SLE. Anifrolumab suppressed type I IFN production by blocking the type I IFN autoamplification loop and inhibited proinflammatory cytokine induction and the upregulation of costimulatory molecules on stimulated pDCs. Blockade of IFNAR1 suppressed plasma cell differentiation in pDC/B cell co-cultures. Anifrolumab did not exhibit CDC or ADCC activity. CONCLUSIONS: Anifrolumab potently inhibits type I IFN-dependent signalling, including the type I IFN autoamplification loop, and is a promising therapeutic for patients with SLE and other diseases that exhibit chronic dysfunctional type I IFN signalling.

6.
Mol Cancer Ther ; 15(4): 689-701, 2016 04.
Article in English | MEDLINE | ID: mdl-26880266

ABSTRACT

HER3/ERBB3 is a kinase-deficient member of the EGFR family receptor tyrosine kinases (RTK) that is broadly expressed and activated in human cancers. HER3 is a compelling cancer target due to its important role in activation of the oncogenic PI3K/AKT pathway. It has also been demonstrated to confer tumor resistance to a variety of cancer therapies, especially targeted drugs against EGFR and HER2. HER3 can be activated by its ligand (heregulin/HRG), which induces HER3 heterodimerization with EGFR, HER2, or other RTKs. Alternatively, HER3 can be activated in a ligand-independent manner through heterodimerization with HER2 in HER2-amplified cells. We developed a fully human mAb against HER3 (KTN3379) that efficiently suppressed HER3 activity in both ligand-dependent and independent settings. Correspondingly, KTN3379 inhibited tumor growth in divergent tumor models driven by either ligand-dependent or independent mechanisms in vitro and in vivo Most intriguingly, while investigating the mechanistic underpinnings of tumor response to KTN3379, we discovered an interesting dichotomy in that PTEN loss, a frequently occurring oncogenic lesion in a broad range of cancer types, substantially blunted the tumor response in HER2-amplified cancer, but not in the ligand-driven cancer. To our knowledge, this represents the first study ascertaining the impact of PTEN loss on the antitumor efficacy of a HER3 mAb. KTN3379 is currently undergoing a phase Ib clinical trial in patients with advanced solid tumors. Our current study may help us optimize patient selection schemes for KTN3379 to maximize its clinical benefits. Mol Cancer Ther; 15(4); 689-701. ©2016 AACR.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacology , Neoplasms/metabolism , Receptor, ErbB-3/antagonists & inhibitors , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Gene Expression , Humans , Ligands , Mice , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Phosphorylation , Protein Multimerization/drug effects , Proto-Oncogene Proteins c-akt/metabolism , RNA Interference , Receptor, ErbB-2/chemistry , Receptor, ErbB-2/metabolism , Receptor, ErbB-3/chemistry , Receptor, ErbB-3/metabolism , Signal Transduction/drug effects , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
7.
Mol Cancer Ther ; 14(7): 1637-49, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25948294

ABSTRACT

ADAM17 is the primary sheddase for HER pathway ligands. We report the discovery of a potent and specific ADAM17 inhibitory antibody, MEDI3622, which induces tumor regression or stasis in many EGFR-dependent tumor models. The inhibitory activity of MEDI3622 correlated with EGFR activity both in a series of tumor models across several indications as well in as a focused set of head and neck patient-derived xenograft models. The antitumor activity of MEDI3622 was superior to that of EGFR/HER pathway inhibitors in the OE21 esophageal model and the COLO205 colorectal model suggesting additional activity outside of the EGFR pathway. Combination of MEDI3622 and cetuximab in the OE21 model was additive and eradicated tumors. Proteomics analysis revealed novel ADAM17 substrates that function outside of the HER pathways and may contribute toward the antitumor activity of the monoclonal antibody.


Subject(s)
ADAM Proteins/antagonists & inhibitors , Antibodies, Monoclonal/pharmacology , ErbB Receptors/antagonists & inhibitors , Neoplasms/drug therapy , Signal Transduction/drug effects , Xenograft Model Antitumor Assays , ADAM Proteins/immunology , ADAM Proteins/metabolism , ADAM17 Protein , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/pharmacokinetics , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Blotting, Western , Cell Line, Tumor , Cell Proliferation/drug effects , Cetuximab/administration & dosage , Cetuximab/pharmacology , Dose-Response Relationship, Drug , Drug Synergism , ErbB Receptors/metabolism , Female , HCT116 Cells , HT29 Cells , Humans , Mice, Inbred DBA , Mice, Nude , Neoplasms/immunology , Neoplasms/metabolism , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...