Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Med ; 30(6): 1655-1666, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38877116

ABSTRACT

In solid tumor oncology, circulating tumor DNA (ctDNA) is poised to transform care through accurate assessment of minimal residual disease (MRD) and therapeutic response monitoring. To overcome the sparsity of ctDNA fragments in low tumor fraction (TF) settings and increase MRD sensitivity, we previously leveraged genome-wide mutational integration through plasma whole-genome sequencing (WGS). Here we now introduce MRD-EDGE, a machine-learning-guided WGS ctDNA single-nucleotide variant (SNV) and copy-number variant (CNV) detection platform designed to increase signal enrichment. MRD-EDGESNV uses deep learning and a ctDNA-specific feature space to increase SNV signal-to-noise enrichment in WGS by ~300× compared to previous WGS error suppression. MRD-EDGECNV also reduces the degree of aneuploidy needed for ultrasensitive CNV detection through WGS from 1 Gb to 200 Mb, vastly expanding its applicability within solid tumors. We harness the improved performance to identify MRD following surgery in multiple cancer types, track changes in TF in response to neoadjuvant immunotherapy in lung cancer and demonstrate ctDNA shedding in precancerous colorectal adenomas. Finally, the radical signal-to-noise enrichment in MRD-EDGESNV enables plasma-only (non-tumor-informed) disease monitoring in advanced melanoma and lung cancer, yielding clinically informative TF monitoring for patients on immune-checkpoint inhibition.


Subject(s)
Circulating Tumor DNA , DNA Copy Number Variations , Machine Learning , Neoplasm, Residual , Tumor Burden , Humans , Circulating Tumor DNA/genetics , Circulating Tumor DNA/blood , Neoplasm, Residual/genetics , Whole Genome Sequencing , Neoplasms/genetics , Neoplasms/blood , Neoplasms/therapy , Neoplasms/pathology , Polymorphism, Single Nucleotide , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , Colorectal Neoplasms/genetics , Colorectal Neoplasms/blood , Colorectal Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/blood , Lung Neoplasms/pathology
2.
Evolution ; 76(2): 236-251, 2022 02.
Article in English | MEDLINE | ID: mdl-34529267

ABSTRACT

Even if a species' phenotype does not change over evolutionary time, the underlying mechanism may change, as distinct molecular pathways can realize identical phenotypes. Here we use linear system theory to explore the consequences of this idea, describing how a gene network underlying a conserved phenotype evolves, as the genetic drift of small changes to these molecular pathways causes a population to explore the set of mechanisms with identical phenotypes. To do this, we model an organism's internal state as a linear system of differential equations for which the environment provides input and the phenotype is the output, in which context there exists an exact characterization of the set of all mechanisms that give the same input-output relationship. This characterization implies that selectively neutral directions in genotype space should be common and that the evolutionary exploration of these distinct but equivalent mechanisms can lead to the reproductive incompatibility of independently evolving populations. This evolutionary exploration, or system drift, is expected to proceed at a rate proportional to the amount of intrapopulation genetic variation divided by the effective population size ( Ne$N_e$ ). At biologically reasonable parameter values this could lead to substantial interpopulation incompatibility, and thus speciation, on a time scale of Ne$N_e$ generations. This model also naturally predicts Haldane's rule, thus providing a concrete explanation of why heterogametic hybrids tend to be disrupted more often than homogametes during the early stages of speciation.


Subject(s)
Biological Evolution , Genetic Drift , Genetic Speciation , Genotype , Hybridization, Genetic , Models, Genetic , Population Density , Reproduction
3.
Nat Genet ; 53(10): 1469-1479, 2021 10.
Article in English | MEDLINE | ID: mdl-34594037

ABSTRACT

Single-cell RNA sequencing has revealed extensive transcriptional cell state diversity in cancer, often observed independently of genetic heterogeneity, raising the central question of how malignant cell states are encoded epigenetically. To address this, here we performed multiomics single-cell profiling-integrating DNA methylation, transcriptome and genotype within the same cells-of diffuse gliomas, tumors characterized by defined transcriptional cell state diversity. Direct comparison of the epigenetic profiles of distinct cell states revealed key switches for state transitions recapitulating neurodevelopmental trajectories and highlighted dysregulated epigenetic mechanisms underlying gliomagenesis. We further developed a quantitative framework to directly measure cell state heritability and transition dynamics based on high-resolution lineage trees in human samples. We demonstrated heritability of malignant cell states, with key differences in hierarchal and plastic cell state architectures in IDH-mutant glioma versus IDH-wild-type glioblastoma, respectively. This work provides a framework anchoring transcriptional cancer cell states in their epigenetic encoding, inheritance and transition dynamics.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Plasticity/genetics , Epigenesis, Genetic , Glioma/genetics , Glioma/pathology , Inheritance Patterns/genetics , Transcription, Genetic , Cell Line, Tumor , CpG Islands/genetics , DNA Copy Number Variations/genetics , DNA Methylation/genetics , Humans , Isocitrate Dehydrogenase/genetics , Phylogeny , Polycomb Repressive Complex 2/metabolism , Promoter Regions, Genetic/genetics , Single-Cell Analysis , Transcriptome/genetics
4.
Cell Syst ; 10(1): 52-65.e7, 2020 01 22.
Article in English | MEDLINE | ID: mdl-31668800

ABSTRACT

Cancer evolution poses a central obstacle to cure, as resistant clones expand under therapeutic selection pressures. Genome sequencing of relapsed disease can nominate genomic alterations conferring resistance but sample collection lags behind, limiting therapeutic innovation. Genome-wide screens offer a complementary approach to chart the compendium of escape genotypes, anticipating clinical resistance. We report genome-wide open reading frame (ORF) resistance screens for first- and third-generation epidermal growth factor receptor (EGFR) inhibitors and a MEK inhibitor. Using serial sampling, dose gradients, and mathematical modeling, we generate genotype-fitness maps across therapeutic contexts and identify alterations that escape therapy. Our data expose varying dose-fitness relationship across genotypes, ranging from complete dose invariance to paradoxical dose dependency where fitness increases in higher doses. We predict fitness with combination therapy and compare these estimates to genome-wide fitness maps of drug combinations, identifying genotypes where combination therapy results in unexpected inferior effectiveness. These data are applied to nominate combination optimization strategies to forestall resistant disease.


Subject(s)
Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutation , Acrylamides/administration & dosage , Acrylamides/pharmacology , Adenocarcinoma of Lung/enzymology , Aniline Compounds/administration & dosage , Aniline Compounds/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Benzimidazoles/administration & dosage , Benzimidazoles/pharmacology , Drug Resistance, Neoplasm/genetics , ErbB Receptors/genetics , ErbB Receptors/metabolism , Erlotinib Hydrochloride/administration & dosage , Erlotinib Hydrochloride/pharmacology , Genetic Fitness , Genotype , Humans , Lung Neoplasms/enzymology , MAP Kinase Signaling System
5.
BMC Evol Biol ; 17(Suppl 1): 4, 2017 02 07.
Article in English | MEDLINE | ID: mdl-28251865

ABSTRACT

BACKGROUND: Cis-regulatory sequences are often composed of many low-affinity transcription factor binding sites (TFBSs). Determining the evolutionary and functional importance of regulatory sequence composition is impeded without a detailed knowledge of the genotype-phenotype map. RESULTS: We simulate the evolution of regulatory sequences involved in Drosophila melanogaster embryo segmentation during early development. Natural selection evaluates gene expression dynamics produced by a computational model of the developmental network. We observe a dramatic decrease in the total number of transcription factor binding sites through the course of evolution. Despite a decrease in average sequence binding energies through time, the regulatory sequences tend towards organisations containing increased high affinity transcription factor binding sites. Additionally, the binding energies of separate sequence segments demonstrate ubiquitous mutual correlations through time. Fewer than 10% of initial TFBSs are maintained throughout the entire simulation, deemed 'core' sites. These sites have increased functional importance as assessed under wild-type conditions and their binding energy distributions are highly conserved. Furthermore, TFBSs within close proximity of core sites exhibit increased longevity, reflecting functional regulatory interactions with core sites. CONCLUSION: In response to elevated mutational pressure, evolution tends to sample regulatory sequence organisations with fewer, albeit on average, stronger functional transcription factor binding sites. These organisations are also shaped by the regulatory interactions among core binding sites with sites in their local vicinity.


Subject(s)
Computer Simulation , Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Evolution, Molecular , Mutation , Regulatory Sequences, Nucleic Acid , Animals , Binding Sites , Drosophila Proteins/genetics , Protein Binding , Selection, Genetic , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...