Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dent Mater ; 36(12): 1495-1507, 2020 12.
Article in English | MEDLINE | ID: mdl-32988646

ABSTRACT

OBJECTIVE: To develop an antimicrobial and anti-adherent thymol (TOH)-containing coating on titanium (Ti) by a bioinspired one-step biocompatible method. METHODS: A nanolayer of adsorbed TOH (TOH-NL-Ti) was formed by an easy deep coating method on Ti surface. The treatment consists in a simple one-step immersion process in a TOH-containing solution. Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR), potentiodynamic electrochemical technique, open circuit potential records, Atomic Force Microscopy (AFM) and measurements of TOH release were used to characterize TOH-NL-Ti. Live/Dead staining and plate counting were employed to quantify attached and living adhered bacteria, respectively. Biocompatibility and cytotoxicity in fibroblastic and pre-osteoblastic cell lines were evaluated by acridine orange staining and MTT assay, respectively. RESULTS: TOH adsorbed on TOH-NL-Ti was detected by ATR-FTIR and electrochemical techniques. ATR-FTIR results showed that TOH nanofilms development involves spontaneous production of ketonic structures on Ti surface. AFM analysis revealed that the thickness of the TOH-NL was below 80 nm. Finally, microbiological assays confirmed that TOH-NL-Ti can inhibit the adhesion and kill attached bacteria leading to the eradication of leaving cells on its surface. After 24 h of biocidal release, the antimicrobial effect is also significant (a decrease of 3 orders in the number of attached bacteria). SIGNIFICANCE: The formation of TOH-NL-Ti nanolayer is a simple strategy able to be applied by not specially trained personnel, to reduce implant infection risks, ensure highly effective antimicrobial action and inhibition of bacterial adhesion on Ti surfaces without showing toxic effects for pre-osteoblastic and fibroblastic cells.


Subject(s)
Dental Implants , Titanium , Coated Materials, Biocompatible , Immersion , Surface Properties , Thymol/pharmacology
2.
ACS Nano ; 2(12): 2531-9, 2008 Dec 23.
Article in English | MEDLINE | ID: mdl-19206289

ABSTRACT

Nanoripple structures spontaneously formed at room temperature during chemical and electrochemical deposition of metals, semiconductors, and alloys on gold and copper templates, patterned with nanocavities, have been studied by atomic force microscopy (AFM) and scanning tunneling microscopy (STM). Annealing the templates at approximately equal to 373 K also results in ripple formation. Both experimental results and modeling, including anisotropic surface diffusion, demonstrate that nanocavity size in the template determines the ripple wavelength and amplitude, prior to a final stage of coarsening. Therefore, an ordered array of "nanodefects" introduced in the substrate is able to guide the self-organization of these nanofeatures during their growth, creating the possibility for nanofabrication of parallel interconnections with adjustable periodicity. Ripples are robust nanostructures that can in turn be used as templates for the preparation of hybrid nanostructured surfaces with specific physical properties.


Subject(s)
Metal Nanoparticles/chemistry , Nanostructures/chemistry , Microscopy, Atomic Force , Microscopy, Scanning Tunneling , Nanotechnology/methods , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...