Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Cachexia Sarcopenia Muscle ; 11(1): 195-207, 2020 02.
Article in English | MEDLINE | ID: mdl-31436048

ABSTRACT

BACKGROUND: The majority of patients with advanced cancer develop cachexia, a weight loss syndrome that severely reduces quality of life and limits survival. Our understanding of the underlying mechanisms that cause the condition is limited, and there are currently no treatment options that can completely reverse cachexia. Several tumour-derived factors and inflammatory mediators have been suggested to contribute to weight loss in cachectic patients. However, inconsistencies between studies are recurrent. Activin A and interleukin 6 (IL-6) are among the best studied factors that seem to be important, and several studies support their individual role in cachexia development. METHODS: We investigated the interplay between activin A and IL-6 in the cachexia-inducing TOV21G cell line, both in culture and in tumours in mice. We previously found that the human TOV21G cells secrete IL-6 that induces autophagy in reporter cells and cachexia in mice. Using this established cachexia cell model, we targeted autocrine activin A by genetic, chemical, and biological approaches. The secretion of IL-6 from the cancer cells was determined in both culture and tumour-bearing mice by a species-specific ELISA. Autophagy reporter cells were used to monitor the culture medium for autophagy-inducing activities, and muscle mass changes were evaluated in tumour-bearing mice. RESULTS: We show that activin A acts in an autocrine manner to promote the synthesis and secretion of IL-6 from cancer cells. By inhibiting activin A signalling, the production of IL-6 from the cancer cells is reduced by 40-50% (up to 42% reduction on protein level, P = 0.0048, and 48% reduction on mRNA level, P = 0.0308). Significantly reduced IL-6 secretion (P < 0.05) from the cancer cells is consistently observed when using biological, chemical, and genetic approaches to interfere with the autocrine activin A loop. Inhibiting activin signalling also reduces the ability of the cancer cells to accelerate autophagy in non-cancerous cells (up to 43% reduced autophagy flux, P = 0.0006). Coherent to the in vitro data, the use of an anti-activin receptor 2 antibody in cachectic tumour-bearing mice reduces serum levels of cancer cell-derived IL-6 by 62% (from 417 to 159 pg/mL, P = 0.03), and, importantly, it reverses cachexia and counteracts loss of all measured muscle groups (P < 0.0005). CONCLUSIONS: Our data support a functional link between activin A and IL-6 signalling pathways and indicate that interference with activin A-induced IL-6 secretion from the tumour has therapeutic potential for cancer-induced cachexia.


Subject(s)
Activins/metabolism , Autocrine Communication/physiology , Autophagy/genetics , Cachexia/genetics , Interleukin-6/metabolism , Ovarian Neoplasms/genetics , Animals , Disease Models, Animal , Female , Humans , Mice , Ovarian Neoplasms/pathology , Signal Transduction
2.
J Cachexia Sarcopenia Muscle ; 9(1): 93-105, 2018 02.
Article in English | MEDLINE | ID: mdl-29214748

ABSTRACT

BACKGROUND: Sarcopenia is defined as the age-related loss of skeletal muscle mass and function. While all humans lose muscle with age, 2-5% of elderly adults develop functional consequences (disabilities). The aim of this study was to investigate muscle myogenesis in healthy elderly adults, with or without sarcopenia, compared with middle-aged controls using both in vivo and in vitro approaches to explore potential biomarker or causative molecular pathways associated with sarcopenic versus non-sarcopenic skeletal muscle phenotypes during ageing. METHODS: Biomarkers of multiple molecular pathways associated with muscle regeneration were analysed using quantitative polymerase chain reaction in quadriceps muscle samples obtained from healthy elderly sarcopenic (HSE, n = 7) or non-sarcopenic (HENS, n = 21) and healthy middle-aged control (HMC, n = 22) groups. An in vitro system of myogenesis (using myoblasts from human donors aged 17-83 years) was used to mimic the environmental challenges of muscle regeneration over time. RESULTS: The muscle biopsies showed evidence of satellite cell activation in HENS (Pax3, P < 0.01, Pax7, P < 0.0001) compared with HMC. Early myogenesis markers Myogenic Differentiation 1 (MyoD1) and Myogenic factor 5 (Myf5) (P < 0.0001) and the late myogenesis marker myogenin (MyoG) (P < 0.01) were increased in HENS. In addition, there was a 30-fold upregulation of TNF-α in HENS compared with HMC (P < 0.0001). The in vitro system demonstrated age-related upregulation of pro-inflammatory cytokines (2-fold upregulation of interleukin (IL)-6, IL-8 mRNA, increased secretion of tumor necrosis factor-α (TNF-α) and IL-6, all P < 0.05) associated with impaired kinetics of myotube differentiation. The HSE biopsy samples showed satellite cell activation (Pax7, P < 0.05) compared with HMC. However, no significant upregulation of the early myogenesis (MyoD and Myf5) markers was evident; only the late myogenesis marker myogenin was upregulated (P < 0.05). Higher activation of the oxidative stress pathway was found in HENS compared with the HSE group. In contrast, there was 10-fold higher upregulation of HSPA1A a stress-induced chaperone acting upon misfolded proteins in HSE compared with the HENS group. CONCLUSIONS: Both pathological and adaptive processes are active in skeletal muscle during healthy ageing. Muscle regeneration pathways are activated during healthy ageing, but there is evidence of dysregulation in sarcopenia. In addition, increased cellular stress, with an impaired oxidative-stress and mis-folded protein response (HSPA1A), may be associated with the development of sarcopenia. The in vitro system of young and old myoblasts replicated some of the differences between young and old muscle.


Subject(s)
Healthy Aging , Muscle, Skeletal/physiopathology , Regeneration/physiology , Sarcopenia/physiopathology , Aged , Aged, 80 and over , Female , Humans , Male
3.
Proc Natl Acad Sci U S A ; 114(47): 12448-12453, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29109273

ABSTRACT

The TGF-ß family ligands myostatin, GDF11, and activins are negative regulators of skeletal muscle mass, which have been reported to primarily signal via the ActRIIB receptor on skeletal muscle and thereby induce muscle wasting described as cachexia. Use of a soluble ActRIIB-Fc "trap," to block myostatin pathway signaling in normal or cachectic mice leads to hypertrophy or prevention of muscle loss, perhaps suggesting that the ActRIIB receptor is primarily responsible for muscle growth regulation. Genetic evidence demonstrates however that both ActRIIB- and ActRIIA-deficient mice display a hypertrophic phenotype. Here, we describe the mode of action of bimagrumab (BYM338), as a human dual-specific anti-ActRIIA/ActRIIB antibody, at the molecular and cellular levels. As shown by X-ray analysis, bimagrumab binds to both ActRIIA and ActRIIB ligand binding domains in a competitive manner at the critical myostatin/activin binding site, hence preventing signal transduction through either ActRII. Myostatin and the activins are capable of binding to both ActRIIA and ActRIIB, with different affinities. However, blockade of either single receptor through the use of specific anti-ActRIIA or anti-ActRIIB antibodies achieves only a partial signaling blockade upon myostatin or activin A stimulation, and this leads to only a small increase in muscle mass. Complete neutralization and maximal anabolic response are achieved only by simultaneous blockade of both receptors. These findings demonstrate the importance of ActRIIA in addition to ActRIIB in mediating myostatin and activin signaling and highlight the need for blocking both receptors to achieve a strong functional benefit.


Subject(s)
Activin Receptors, Type II/antagonists & inhibitors , Antibodies, Blocking/pharmacology , Antibodies, Monoclonal/pharmacology , Hypertrophy/chemically induced , Muscle, Skeletal/drug effects , Activin Receptors, Type II/metabolism , Activins/metabolism , Animals , Antibodies, Blocking/therapeutic use , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Bone Morphogenetic Proteins/metabolism , Crystallography, X-Ray , Dose-Response Relationship, Drug , Growth Differentiation Factors/metabolism , HEK293 Cells , Humans , Hypertrophy/pathology , Male , Mice , Mice, SCID , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Myostatin/metabolism , Rats , Rats, Wistar , Recombinant Proteins/metabolism , Signal Transduction/drug effects , Wasting Syndrome/drug therapy , Wasting Syndrome/pathology
4.
J Cachexia Sarcopenia Muscle ; 8(4): 567-582, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28296247

ABSTRACT

BACKGROUND: Cancer cachexia (cancer-induced muscle wasting) is found in a subgroup of cancer patients leaving the patients with a poor prognosis for survival due to a lower tolerance of the chemotherapeutic drug. The cause of the muscle wasting in these patients is not fully understood, and no predictive biomarker exists to identify these patients early on. Skeletal muscle loss is an inevitable consequence of advancing age. As cancer frequently occurs in old age, identifying and differentiating the molecular mechanisms mediating muscle wasting in cancer cachexia vs. age-related sarcopenia are a challenge. However, the ability to distinguish between them is critical for early intervention, and simple measures of body weight may not be sufficiently sensitive to detect cachexia early. METHODS: We used a range of omics approaches: (i) undepleted proteome was quantified using advanced high mass accuracy mass spectrometers in SWATH-MS acquisition mode; (ii) phospho epitopes were quantified using protein arrays; and (iii) morphology was assessed using fluorescent microscopy. RESULTS: We quantified the soluble proteome of muscle biopsies from cancer cachexia patients and compared them with cohorts of cancer patients and healthy individuals with and without age-related muscle loss (aka age-related sarcopenia). Comparing the proteomes of these cohorts, we quantified changes in muscle contractile myosins and energy metabolism allowing for a clear identification of cachexia patients. In an in vitro time lapse experiment, we mimicked cancer cachexia and identified signal transduction pathways governing cell fusion to play a pivotal role in preventing muscle regeneration. CONCLUSIONS: The work presented here lays the foundation for further understanding of muscle wasting diseases and holds the promise of overcoming ambiguous weight loss as a measure for defining cachexia to be replaced by a precise protein signature.


Subject(s)
Cachexia/metabolism , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Proteome/analysis , Sarcopenia/metabolism , Aged , Aged, 80 and over , Aging/metabolism , Aging/pathology , Cachexia/pathology , Cells, Cultured , Female , Humans , Male , Middle Aged , Muscle Proteins/analysis , Muscle, Skeletal/pathology , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Pilot Projects , Sarcopenia/pathology
5.
Aging (Albany NY) ; 8(8): 1690-702, 2016 08.
Article in English | MEDLINE | ID: mdl-27454226

ABSTRACT

Muscle wasting in old age or cancer may result from failed myofiber regeneration and/or accelerated atrophy. This study aimed to determine from transcriptomic analysis of human muscle the integrity of the cellular stress response system in relation to satellite cell differentiation or apoptosis in patients with cancer (weight-stable (CWS) or weight-losing (CWL)) or healthy elderly (HE) when compared with healthy middle-aged controls (HMA). 28 patients with cancer (CWS: 18 and CWL: 10), HE: 21 and HMA: 20 underwent biopsy of quadriceps muscle. The expression of transcription factors for muscle regeneration (Pax3, Pax7 and MyoD) was increased in CWS and HE compared with HMA (p≤0.001). In contrast, the expression of the late myogenic differentiation marker MyoG was reduced in CWS and CWL but increased in HE (p≤0.0001). Bax was significantly increased in CWS, CWL and HE (p≤0.0001). Expression of the oxidative defense genes SOD2, GCLM, and Nrf2 was decreased in CWS and CWL but increased in HE (p≤0.0001). There is evidence for blockade of satellite cell maturation, upregulation of apoptosis and reduced oxidative defense in the muscle of cancer patients. In the healthy elderly the potential for differentiation and oxidative defense is maintained.


Subject(s)
Cachexia/metabolism , Muscle Development/physiology , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Neoplasms/metabolism , Satellite Cells, Skeletal Muscle/metabolism , Aged , Aged, 80 and over , Cachexia/pathology , Female , Humans , Male , Middle Aged , Muscle, Skeletal/pathology , Muscular Atrophy/pathology , Neoplasms/pathology , Satellite Cells, Skeletal Muscle/pathology
6.
Anal Biochem ; 343(2): 244-55, 2005 Aug 15.
Article in English | MEDLINE | ID: mdl-15963938

ABSTRACT

Deubiquitinating enzymes (DUBs) catalyze the removal of attached ubiquitin molecules from amino groups of target proteins. The large family of DUBs plays an important role in the regulation of the intracellular homeostasis of different proteins and influences therefore key events such as cell division, apoptosis, etc. The DUB family members UCH-L3 and USP2 are believed to inhibit the degradation of various tumor-growth-promoting proteins by removing the trigger for degradation. Inhibitors of these enzymes should therefore lead to enhanced degradation of oncoproteins and may thus stop tumor growth. To develop an enzymatic assay for the search of UCH-L3 and USP2 inhibitors, C-terminally labeled ubiquitin substrates were enzymatically synthesized. We have used the ubiquitin-activating enzyme E1 and one of the ubiquitin-conjugating enzymes E2 to attach a fluorescent lysine derivative to the C terminus of ubiquitin. Since only the epsilon-NH(2) group of the lysine derivatives was free and reactive, the conjugates closely mimic the isopeptide bond between the ubiquitin and the lysine side chains of the targeted proteins. Various substrates were synthesized by this approach and characterized enzymatically with the two DUBs. The variant consisting of the fusion protein between the large N-terminal NusA tag and the ubiquitin which was modified with alpha-NH(2)-tetramethylrhodamin-lysine, was found to give the highest dynamic range in a fluorescence polarization readout. Therefore we have chosen this substrate for the development of a miniaturized, fluorescence-polarization-based high-throughput screening assay.


Subject(s)
Fluorescent Dyes/chemical synthesis , Ubiquitin/analogs & derivatives , Ubiquitin/chemical synthesis , Chromatography, High Pressure Liquid , Electrophoresis, Polyacrylamide Gel , Endopeptidases/chemistry , Endopeptidases/metabolism , Fluorescent Dyes/chemistry , Kinetics , Lysine/chemistry , Lysine/metabolism , Rhodamines/chemistry , Rhodamines/metabolism , Time Factors , Ubiquitin/chemistry , Ubiquitin Thiolesterase/chemistry , Ubiquitin Thiolesterase/metabolism
7.
Assay Drug Dev Technol ; 3(2): 155-67, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15871690

ABSTRACT

The majority of proteins contain intrinsic fluorophores as natural sensors of molecular structures, dynamics, and interactions. The intrinsic protein fluorescence signal allows for the label-free and, hence, undisturbed and rapid study of protein-ligand interactions. Ultraviolet-based drug screening is hampered by the background, photobleaching, light scattering, inner filter effects, and interfering assay compounds. Such problems can be overcome by means of molecular three-photon excitation (3PE) with infrared femtosecond light pulses since longer excitation wavelengths result in less Raleigh scattering, and the subfemtoliter (confocal-like) 3PE volume minimizes out-of-focus photobleaching, background generation, and inner filter effects. We demonstrate the general feasibility of 3PE for protein spectroscopy and illustrate the technique's excellent potential for high-throughput screening. By using the intrinsic fluorescence intensity of a protein-substrate, we were able to discriminate between ligands of different affinities in binding assays.


Subject(s)
Drug Evaluation, Preclinical/methods , Microscopy, Confocal/methods , Microscopy, Fluorescence, Multiphoton/methods , Pharmacology/methods , Protein Interaction Mapping/methods , Proteins/metabolism , Spectrometry, Fluorescence/methods , Computer-Aided Design , Drug Design , Drug Evaluation, Preclinical/instrumentation , Equipment Design , Equipment Failure Analysis , Feasibility Studies , Microscopy, Confocal/instrumentation , Microscopy, Fluorescence, Multiphoton/instrumentation , Protein Interaction Mapping/instrumentation , Spectrometry, Fluorescence/instrumentation
8.
J Biomol Screen ; 9(7): 569-77, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15475476

ABSTRACT

The beta isoform of the heat shock protein 90 (Hsp90beta) is a cellular chaperone required for the maturation of key proteins involved in growth response to extracellular factors as well as oncogenic transformation of various cell types. Compounds that inhibit the function of Hsp90beta are thus believed to have potential as novel anticancer drugs. To date, 2 fungal metabolites are known to inhibit Hsp90beta. However, insolubility and liver toxicity restrict the clinical use of these molecules. The limitation to identify novel and safe Hsp90beta inhibitors is that presently no suitable high-throughput screening assay is available. Here, the authors present the development of a homogenous assay based on 2-dimensional fluorescence intensity distribution analysis of tetramethyl-rhodamine (TAMRA)-labeled radicicol bound to Hsp90beta. Furthermore, the assay has been shown to be compatible with the confocal nanoscreening platform Mark II from Evotec-Technologies and can therefore be used for miniaturized high-throughput screening. The applied detection technology provides critical information about the nature of biomolecular interaction at the thermodynamic equilibrium, such as affinity constants and stoichiometric parameters of the binding. The assay is used to identify small molecular weight compounds displacing TAMRA-radicicol. Such compounds are believed to be important molecules in the discovery of novel anticancer drugs.


Subject(s)
Biological Assay/methods , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Fluorescence , Humans , Kinetics , Lactones/chemistry , Macrolides , Miniaturization , Molecular Structure , Nanotechnology , Protein Binding , Radioligand Assay
9.
J Biol Chem ; 279(47): 49330-7, 2004 Nov 19.
Article in English | MEDLINE | ID: mdl-15337744

ABSTRACT

The crystal structure of the ligand binding domain (LBD) of the estrogen-related receptor alpha (ERRalpha, NR3B1) complexed with a coactivator peptide from peroxisome proliferator-activated receptor coactivator-1alpha (PGC-1alpha) reveals a transcriptionally active conformation in the absence of a ligand. This is the first x-ray structure of ERRalpha LBD, solved to a resolution of 2.5 A, and the first structure of a PGC-1alpha complex. The putative ligand binding pocket (LBP) of ERRalpha is almost completely occupied by side chains, in particular with the bulky side chain of Phe328 (corresponding to Ala272 in ERRgamma and Ala350 in estrogen receptor alpha). Therefore, a ligand of a size equivalent to more than approximately 4 carbon atoms could only bind in the LBP, if ERRalpha would undergo a major conformational change (in particular the ligand would displace H12 from its agonist position). The x-ray structure thus provides strong evidence for ligand-independent transcriptional activation by ERRalpha. The interactions of PGC-1alpha with ERRalpha also reveal for the first time the atomic details of how a coactivator peptide containing an inverted LXXLL motif (namely a LLXYL motif) binds to a LBD. In addition, we show that a PGC-1alpha peptide containing this nuclear box motif from the L3 site binds ERRalpha LBD with a higher affinity than a peptide containing a steroid receptor coactivator-1 motif and that the affinity is further enhanced when all three leucine-rich regions of PGC-1alpha are present.


Subject(s)
Heat-Shock Proteins/metabolism , Receptors, Cytoplasmic and Nuclear/chemistry , Receptors, Estrogen/chemistry , Transcription Factors/metabolism , Transcriptional Activation , Amino Acid Motifs , Animals , Binding Sites , Carbon/chemistry , Cell Line , Cell Nucleus/metabolism , Cloning, Molecular , Crystallography, X-Ray , Dose-Response Relationship, Drug , Histone Acetyltransferases , Humans , Insecta , Leucine/chemistry , Ligands , Models, Molecular , Mutation , Nuclear Receptor Coactivator 1 , Peptides/chemistry , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Protein Binding , Protein Conformation , Protein Structure, Tertiary , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Estrogen/metabolism , Temperature , ERRalpha Estrogen-Related Receptor
10.
Anal Biochem ; 327(1): 119-25, 2004 Apr 01.
Article in English | MEDLINE | ID: mdl-15033519

ABSTRACT

Monocyte chemoattractant protein-1 (MCP-1) is a potential therapeutic target for the treatment of several inflammatory conditions, including rheumatoid arthritis and chronic obstructive pulmonary disease. Current cell-based assays for MCP-1 use monocyte chemotaxis or calcium flux as a readout. Here, we describe an alternative bioassay based on MCP-1-induced phosphorylation of the mitogen-activated protein kinases (MAPK) p44 (ERK1) and p42 (ERK2). Adherent cells expressing the MCP-1 receptor CCR2B are treated with MCP-1 in 96-well plates in the presence or absence of inhibitors, fixed and permeabilized with methanol, and then probed with a monoclonal antibody that selectively recognizes the doubly phosphorylated form of p44/42 MAPK. Bound antibody is detected with a secondary antibody-peroxidase conjugate and a chromogenic substrate. The phosphorylation of p44/42 MAPK as detected in this assay peaks after 3-5 min of MCP-1 treatment, and the concentration of MCP-1 required for half-maximal p44/42 MAPK phosphorylation is 1-3 nM. MCP-1-induced phosphorylation of p44/42 MAPK is dependent upon the expression of CCR2B. The assay can be used for screening and characterization of small molecule inhibitors and antibodies blocking the binding of MCP-1 to its receptor. Since the assay is rapid and simple, it may represent a useful alternative to chemotaxis or calcium mobilization assays for the analysis of MCP-1 inhibitors.


Subject(s)
Biological Assay/methods , Chemokine CCL2/analysis , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinases/metabolism , Amides/pharmacology , Animals , Antibodies, Monoclonal/analysis , Carbazoles/pharmacology , Cell Line , Chemokine CCL2/pharmacology , Chromones/pharmacology , Cricetinae , DNA, Complementary/isolation & purification , Enzyme Inhibitors/pharmacology , Indoles/pharmacology , Microchemistry/methods , Mitogen-Activated Protein Kinase 1/analysis , Mitogen-Activated Protein Kinase 3 , Mitogen-Activated Protein Kinases/analysis , Morpholines/pharmacology , Phosphorylation , Promoter Regions, Genetic , Pyridines/pharmacology , Receptors, CCR2 , Receptors, Chemokine/genetics , Receptors, Chemokine/metabolism , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...