Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 32(1): 015705, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33043906

ABSTRACT

The integration of graphene (Gr) with nitride semiconductors is highly interesting for applications in high-power/high-frequency electronics and optoelectronics. In this work, we demonstrated the direct growth of Gr on Al0.5Ga0.5N/sapphire templates by propane (C3H8) chemical vapor deposition at a temperature of 1350 °C. After optimization of the C3H8 flow rate, a uniform and conformal Gr coverage was achieved, which proved beneficial to prevent degradation of AlGaN morphology. X-ray photoemission spectroscopy revealed Ga loss and partial oxidation of Al in the near-surface AlGaN region. Such chemical modification of a ∼2 nm thick AlGaN surface region was confirmed by cross-sectional scanning transmission electron microscopy combined with electron energy loss spectroscopy, which also showed the presence of a bilayer of Gr with partial sp2/sp3 hybridization. Raman spectra indicated that the deposited Gr is nanocrystalline (with domain size ∼7 nm) and compressively strained. A Gr sheet resistance of ∼15.8 kΩ sq-1 was evaluated by four-point-probe measurements, consistently with the nanocrystalline nature of these films. Furthermore, nanoscale resolution current mapping by conductive atomic force microscopy indicated local variations of the Gr carrier density at a mesoscopic scale, which can be ascribed to changes in the charge transfer from the substrate due to local oxidation of AlGaN or to the presence of Gr wrinkles.

2.
Nanotechnology ; 30(28): 284003, 2019 Jul 12.
Article in English | MEDLINE | ID: mdl-30913546

ABSTRACT

In this paper, micro-Raman mapping and conductive atomic force microscopy (C-AFM) were jointly applied to investigate the structural and electrical homogeneity of quasi-free-standing monolayer graphene (QFMLG), obtained by high temperature decomposition of 4H-SiC(0001) followed by hydrogen intercalation at 900 °C. Strain and doping maps, obtained by Raman data, showed the presence of sub-micron patches with reduced hole density correlated to regions with higher compressive strain, probably associated with a locally reduced hydrogen intercalation. Nanoscale resolution electrical maps by C-AFM also revealed the presence of patches with enhanced current injection through the QFMLG/SiC interface, indicating a locally reduced Schottky barrier height (ΦB). The ΦB values evaluated from local I-V curves by the thermionic emission model were in good agreement with the values calculated for the QFMLG/SiC interface using the Schottky-Mott rule and the graphene holes density from Raman maps. The demonstrated approach revealed a useful and non-invasive method to probe the structural and electrical homogeneity of QFMLG for future nano-electronics applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...