Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Soc Mass Spectrom ; 21(1): 97-103, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19889553

ABSTRACT

An ambient desorption/ionization (ADI) source, known as the flowing atmospheric pressure afterglow (FAPA), has been coupled to a Mattauch-Herzog mass spectrograph (MHMS) equipped with a focal plane camera (FPC) array detector. The FAPA ionization source enables direct mass spectral analysis of solids, liquids, and gases through either positive or negative ionization modes. In either case, spectra are generally simple with dominant peaks being the molecular ions or protonated molecular ions. Use of the FAPA source with the MHMS allows the FPC detector to be characterized for the determination of molecular species, whereas previously only atomic mass spectrometry (MS) has been demonstrated. Furthermore, the FPC is shown to be sensitive to negative ions without the need to change any detector parameters. The analysis of solid, liquid, and gaseous samples through positive and negative ionization is demonstrated with detection limits (1-25 fmol/s, approximately 0.3-10 pg of analyte per mL of helium) surpassing those obtained with the FAPA source coupled to a time-of-flight mass analyzer.

2.
Anal Chem ; 81(13): 5467-73, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-19462968

ABSTRACT

A 512-channel Faraday-strip array detector has been developed and fitted to a Mattauch-Herzog geometry mass spectrograph for the simultaneous acquisition of multiple mass-to-charge values. Several advantages are realized by using simultaneous detection methods, including higher duty cycles, removal of correlated noise, and multianalyte transient analyses independent of spectral skew. The new 512-channel version offers narrower, more closely spaced pixels, providing improved spectral peak sampling and resolution. In addition, the electronics in the amplification stage of the new detector array incorporate a sample-and-hold feature that enables truly simultaneous interrogation of all 512 channels. While sensitivity and linear dynamic range remain impressive for this Faraday-based detector system, limits of detection and isotope ratio data have suffered slightly from leaky p-n junctions produced during the manufacture of the semiconductor-based amplification and readout stages. This paper describes the new 512-channel detector array, the current dominant noise sources, and the figures of merit for the device as pertaining to inductively coupled plasma ionization.

3.
J Am Soc Mass Spectrom ; 20(5): 837-44, 2009 May.
Article in English | MEDLINE | ID: mdl-19185515

ABSTRACT

Two relatively new ambient ionization sources, direct analysis in real time (DART) and the flowing atmospheric-pressure afterglow (FAPA), use direct current, atmospheric-pressure discharges to produce reagent ions for the direct ionization of a sample. Although at a first glance these two sources appear similar, a fundamental study reveals otherwise. Specifically, DART was found to operate with a corona-to-glow transition (C-G) discharge whereas the FAPA was found to operate with a glow-to-arc transition (G-A) discharge. The characteristics of both discharges were evaluated on the basis of four factors: reagent-ion production, response to a model analyte (ferrocene), infrared (IR) thermography of the gas used for desorption and ionization, and spatial emission characteristics. The G-A discharge produced a greater abundance and a wider variety of reagent ions than the C-G discharge. In addition, the discharges yielded different adducts and signal strengths for ferrocene. It was also found that the gas exiting the discharge chamber reached a maximum of 235 degrees C and 55 degrees C for the G-A and C-G discharges, respectively. Finally, spatially resolved emission maps of both discharges showed clear differences for N(2)(+) and O(I). These findings demonstrate that the discharges used by FAPA and DART are fundamentally different and should have different optimal applications for ambient desorption/ionization mass spectrometry (ADI-MS).

4.
Anal Chem ; 79(20): 7662-8, 2007 Oct 15.
Article in English | MEDLINE | ID: mdl-17877420

ABSTRACT

In mass spectrometry, several advantages can be derived when multiple mass-to-charge values are detected simultaneously and continuously. One such advantage is an improved duty cycle, which leads to superior limits of detection, better precision, shorter analysis times, and reduced sample sizes. A second advantage is the ability to reduce correlated noise by taking the ratio of two or more simultaneously collected signals, enabling greatly enhanced isotope ratio data. A final advantage is the elimination of spectral skew, leading to more accurate transient signal analysis. Here, these advantages are demonstrated by means of a novel Faraday-strip array detector coupled to a Mattauch-Herzog mass spectrograph. The same system is used to monitor elemental fractionation phenomena in laser ablation inductively coupled plasma mass spectrometry.

5.
Anal Chem ; 78(13): 4319-25, 2006 Jul 01.
Article in English | MEDLINE | ID: mdl-16808438

ABSTRACT

A second-generation Faraday-strip array detector has been coupled to an inductively coupled plasma Mattauch-Herzog geometry mass spectrograph, thereby offering simultaneous acquisition of a range of mass-to-charge ratios. The second-generation device incorporates narrower, more closely spaced collectors than the earlier system. Furthermore, the new camera can acquire signal on all collectors at a frequency greater than 2 kHz and has the ability to independently adjust the gain level of each collector. Each collector can also be reset independently. With these improvements, limits of detection in the hundreds of picograms per liter for metals in solution have been obtained. Some additional features, such as a broader linear dynamic range (over 7 orders of magnitude), greater resolving power (up to 600), and improved isotope ratio accuracy were attained. In addition, isotope ratio precision as low as 0.018% RSD was achieved.

7.
Anal Bioanal Chem ; 380(2): 227-34, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15551077

ABSTRACT

The use of a separation step, such as liquid chromatography, prior to inductively coupled plasma mass spectrometry (ICP-MS) has become a common tool for highly selective and sensitive analyses. This type of coupling has several benefits including the ability to perform speciation analysis or to remove isobaric interferences. Several limitations of conventional instruments result from the necessity to scan or pulse the mass spectrometer to obtain a complete mass spectrum. When the instrument is operated in such a non-continuous manner, duty cycle is reduced, resulting in poorer absolute limits of detection. Additionally, with scanning instruments, spectral skew can be introduced into the measurement, limiting quantitation accuracy. To address these shortcomings, a high-performance liquid chromatograph has been coupled to an ICP-MS capable of continuous sample introduction and simultaneous multimass detection. These features have been realized with a novel detector array, the focal plane camera. Instrument performance has been tested for both speciation analysis and for the elimination of isobaric interferences. Absolute limits of detection in the sub picogram to tens of picograms regime are obtainable, while the added mass dimension introduced by simultaneous detection dramatically increases chromatographic peak capacity.


Subject(s)
Arsenicals/analysis , Lanthanoid Series Elements/analysis , Selenium Compounds/analysis , Chromatography, High Pressure Liquid/methods , Mass Spectrometry/methods , Sensitivity and Specificity
8.
J Am Soc Mass Spectrom ; 15(6): 769-76, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15144966

ABSTRACT

The use of laser ablation (LA) as a sample-introduction method for inductively coupled plasma mass spectrometry (ICP-MS) creates a powerful tool for trace elemental analysis. With this type of instrument, high analyte spatial resolution is possible in three dimensions with ng/g limits of detection and minimal sample consumption. Here, simultaneous detection is used to eliminate the correlated noise that plagues the ablation process. This benefit allows analyses to be performed with single laser pulses, resulting in improved depth resolution, even less sample consumption, and improved measurement precision. The new instrument includes an LA sample-introduction system coupled to an ICP ionization source and a Mattauch-Herzog mass spectrograph (MHMS) fitted with a novel array detector. With this instrument, absolute limits of detection are in the tens to hundreds of fg regime and isotope-ratio precision is better than 0.02% RSD with a one-hour integration period. Finally, depth-profile analysis has been performed with a depth resolution of 5 nm per ablation event.

9.
Anal Chem ; 76(9): 2531-6, 2004 May 01.
Article in English | MEDLINE | ID: mdl-15117194

ABSTRACT

A novel charge-sensitive detector array, termed the focal plane camera (FPC), has been coupled to a Mattauch-Herzog mass spectrograph (MHMS) with an inductively coupled plasma ionization source. The FPC employs an array of gold Faraday cups, each with its own charge-integrating circuit that allows the simultaneous detection of several m/z ratios. The ion-sampling interface of the MHMS has been redesigned to provide better heat transfer away from the sampler and skimmer cones and to reduce the negative effects of turbulent gas flows around the plasma. The instrument has produced limits of detection in the tens to hundreds of parts per quadrillion regime and isotope ratio accuracy and precision of 5% error and 0.007% RSD, respectively. Limits of detection with the FPC are comparable to those obtained with a single-channel secondary electron multiplier (SEM). However, the isotope ratio accuracy and precision are better with the FPC than when the SEM is employed. The dynamic range has been shown to be linear over 7 orders of magnitude.

SELECTION OF CITATIONS
SEARCH DETAIL
...