Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 19(4): 2329-2333, 2019 04 10.
Article in English | MEDLINE | ID: mdl-30811943

ABSTRACT

Stressed nanomechanical resonators are known to have exceptionally high quality factors ( Q) due to the dilution of intrinsic dissipation by stress. Typically, the amount of dissipation dilution and thus the resonator Q is limited by the high mode curvature region near the clamps. Here we study the effect of clamp geometry on the Q of nanobeams made of high-stress Si3N4. We find that tapering the beam near the clamps, thus locally increasing the stress, leads to an increased Q of MHz-frequency low order modes due to enhanced dissipation dilution. Contrary to recent studies of tethered-membrane resonators, we find that widening the clamps leads to a decreased Q despite increased stress in the beam bulk. The tapered-clamping approach has practical advantages compared to the recently developed "soft-clamping" technique, as it enhances the Q of the fundamental mode and can be implemented without increasing the device size.

2.
Nano Lett ; 18(5): 3138-3146, 2018 05 09.
Article in English | MEDLINE | ID: mdl-29624396

ABSTRACT

We present quantum yield measurements of single layer WSe2 (1L-WSe2) integrated with high-Q ( Q > 106) optical microdisk cavities, using an efficient (η > 90%) near-field coupling scheme based on a tapered optical fiber. Coupling of the excitonic emission is achieved by placing 1L-WSe2 in the evanescent cavity field. This preserves the microresonator high intrinsic quality factor ( Q > 106) below the bandgap of 1L-WSe2. The cavity quantum yield is QYc ≈ 10-3, consistent with operation in the broad emitter regime (i.e., the emission lifetime of 1L-WSe2 is significantly shorter than the bare cavity decay time). This scheme can serve as a precise measurement tool for the excitonic emission of layered materials into cavity modes, for both in plane and out of plane excitation.

3.
Opt Express ; 21(25): 31698-712, 2013 Dec 16.
Article in English | MEDLINE | ID: mdl-24514742

ABSTRACT

We demonstrate for the first time a 300nm thick, 300µm × 300µm 2D dielectric photonic crystal slab membrane with a quality factor of 10,600 by coupling light to slightly perturbed dark modes through alternating nano-hole sizes. The newly created fundamental guided resonances greatly reduce nano-fabrication accuracy requirements. Moreover, we created a new layer architecture resulting in electric field enhancement at the interface between the slab and sensing regions, and spectral sensitivity of >800 nm/RIU, that is, >0.8 of the single-mode theoretical upper limit of spectral sensitivity.


Subject(s)
Photometry/instrumentation , Refractometry/instrumentation , Surface Plasmon Resonance/instrumentation , Computer Simulation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Models, Theoretical
SELECTION OF CITATIONS
SEARCH DETAIL
...