Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Adv ; 7(20)2021 May.
Article in English | MEDLINE | ID: mdl-33990322

ABSTRACT

Measurements of ice temperature provide crucial constraints on ice viscosity and the thermodynamic processes occurring within a glacier. However, such measurements are presently limited by a small number of relatively coarse-spatial-resolution borehole records, especially for ice sheets. Here, we advance our understanding of glacier thermodynamics with an exceptionally high-vertical-resolution (~0.65 m), distributed-fiber-optic temperature-sensing profile from a 1043-m borehole drilled to the base of Sermeq Kujalleq (Store Glacier), Greenland. We report substantial but isolated strain heating within interglacial-phase ice at 208 to 242 m depth together with strongly heterogeneous ice deformation in glacial-phase ice below 889 m. We also observe a high-strain interface between glacial- and interglacial-phase ice and a 73-m-thick temperate basal layer, interpreted as locally formed and important for the glacier's fast motion. These findings demonstrate notable spatial heterogeneity, both vertically and at the catchment scale, in the conditions facilitating the fast motion of marine-terminating glaciers in Greenland.

2.
3.
Sensors (Basel) ; 20(8)2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32326544

ABSTRACT

Distributed temperature sensing (DTS) systems can be used to estimate the temperature along optic fibers of several kilometers at a sub-meter interval. DTS systems function by shooting laser pulses through a fiber and measuring its backscatter intensity at two distinct wavelengths in the Raman spectrum. The scattering-loss coefficients for these wavelengths are temperature-dependent, so that the temperature along the fiber can be estimated using calibration to fiber sections with a known temperature. A new calibration approach is developed that allows for an estimate of the uncertainty of the estimated temperature, which varies along the fiber and with time. The uncertainty is a result of the noise from the detectors and the uncertainty in the calibrated parameters that relate the backscatter intensity to temperature. Estimation of the confidence interval of the temperature requires an estimate of the distribution of the noise from the detectors and an estimate of the multi-variate distribution of the parameters. Both distributions are propagated with Monte Carlo sampling to approximate the probability density function of the estimated temperature, which is different at each point along the fiber and varies over time. Various summarizing statistics are computed from the approximate probability density function, such as the confidence intervals and the standard uncertainty (the estimated standard deviation) of the estimated temperature. An example is presented to demonstrate the approach and to assess the reasonableness of the estimated confidence intervals. The approach is implemented in the open-source Python package "dtscalibration".

4.
Boundary Layer Meteorol ; 173(2): 289-309, 2019.
Article in English | MEDLINE | ID: mdl-31597985

ABSTRACT

Conventional in situ observations of meteorological variables are restricted to a limited number of levels near the surface, with the lowest observation often made around 1-m height. This can result in missed observations of both shallow fog, and the initial growth stage of thicker fog layers. At the same time, numerical experiments have demonstrated the need for high vertical grid resolution in the near-surface layer to accurately simulate the onset of fog; this requires correspondingly high-resolution observational data for validation. A two-week field campaign was conducted in November 2017 at the Cabauw Experimental Site for Atmospheric Research (CESAR) in the Netherlands. The aim was to observe the growth of shallow fog layers and assess the possibility of obtaining very high-resolution observations near the surface during fog events. Temperature and relative humidity were measured at centimetre resolution in the lowest 7 m using distributed temperature sensing. Further, a novel approach was employed to estimate visibility in the lowest 2.5 m using a camera and an extended light source. These observations were supplemented by the existing conventional sensors at the site, including those along a 200-m tall tower. Comparison between the increased-resolution observations and their conventional counterparts show the errors to be small, giving confidence in the reliability of the techniques. The increased resolution of the observations subsequently allows for detailed investigations of fog growth and evolution. This includes the observation of large temperature inversions in the lowest metre (up to 5 K) and corresponding regions of (super)saturation where the fog formed. Throughout the two-week observation period, fog was observed twice at the conventional sensor height of 2.0 m. Two additional low-visibility events were observed in the lowest 0-0.5 m using the camera-based observations, but were missed by the conventional sensors. The camera observations also showed the growth of shallow radiation fog, forming in the lowest 0.5 m as early as two hours before it was observed at the conventional height of 2 m.

SELECTION OF CITATIONS
SEARCH DETAIL
...