Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cardiovasc Ultrasound ; 22(1): 3, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38229189

ABSTRACT

BACKGROUND: Swine are frequently used as animal model for cardiovascular research, especially in terms of representativity of human anatomy and physiology. Reference values for the most common species used in research are important for planning and execution of animal testing. Transesophageal echocardiography is the gold standard for intraoperative imaging, but can be technically challenging in swine. Its predecessor, epicardial echocardiography (EE), is a simple and fast intraoperative imaging technique, which allows comprehensive and goal-directed assessment. However, there are few echocardiographic studies describing echocardiographic parameters in juvenile swine, none of them using EE. Therefore, in this study, we provide a comprehensive dataset on multiple geometric and functional echocardiographic parameters, as well as basic hemodynamic parameters in swine using EE. METHODS: The data collection was performed during animal testing in ten female swine (German Landrace, 104.4 ± 13.0 kg) before left ventricular assist device implantation. Hemodynamic data was recorded continuously, before and during EE. The herein described echocardiographic measurements were acquired according to a standardized protocol, encompassing apical, left ventricular short axis and long axis as well as epiaortic windows. In total, 50 echocardiographic parameters and 10 hemodynamic parameters were assessed. RESULTS: Epicardial echocardiography was successfully performed in all animals, with a median screening time of 14 min (interquartile range 11-18 min). Referring to left ventricular function, ejection fraction was 51.6 ± 5.9% and 51.2 ± 6.2% using the Teichholz and Simpson methods, respectively. Calculated ventricular mass was 301.1 ± 64.0 g, as the left ventricular end-systolic and end-diastolic diameters were 35.3 ± 2.5 mm and 48.2 ± 3.5 mm, respectively. The mean heart rate was 103 ± 28 bpm, mean arterial pressure was 101 ± 20 mmHg and mean flow at the common carotid artery was 627 ± 203 mL/min. CONCLUSION: Epicardial echocardiography allows comprehensive assessment of most common echocardiographic parameters. Compared to humans, there are important differences in swine with respect to ventricular mass, size and wall thickness, especially in the right heart. Most hemodynamic parameters were comparable between swine and humans. This data supports study planning, animal and device selection, reinforcing the three R principles in animal research.


Subject(s)
Echocardiography , Ventricular Function, Left , Humans , Female , Animals , Swine , Ventricular Function, Left/physiology , Echocardiography/methods , Hemodynamics , Heart Ventricles/diagnostic imaging
2.
Health Sci Rep ; 7(1): e1777, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38186934

ABSTRACT

Background: Perioperative echocardiography is of paramount importance during cardiac surgery. Nonetheless, in the experimental large-animal setting, it might be challenging obtaining optimal imaging when using conventional imaging acquisition techniques, such as transthoracic and transesophageal screenings. Open-chest surgery allows epicardial echocardiographic assessment with direct contact between probe and heart, thus providing superior quality. Standard protocols regarding the use of epicardial ultrasound in swine for research purposes are lacking. Methods: Epicardial echocardiography was performed in 10 female German Landrace pigs undergoing cardiac surgery. A structured and comprehensive protocol for epicardial echocardiography was elaborated including apical, ventricular long and short axis, as well as epiaortic planes. All experiments were approved by the local board for animal welfare and conducted in accordance with the German animal protection law (TierSchG) and the ARRIVE guidelines. Conclusions: Systematic protocols using epicardial echocardiography may serve as an additional tool to assess cardiac dimensions and function in experimental scenarios with swine models.

3.
Bioengineering (Basel) ; 10(4)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37106673

ABSTRACT

A novel accessory directing the blood from the outflow of a left ventricular assist device (LVAD) back through the left ventricular apex and across the aortic valve allows LVAD implantation via the left ventricular apex solely but may affect the LVAD performance. We quantified the effect of the accessory on LVAD flow and pressure head in vitro. In a mock circulatory loop, a centrifugal-flow LVAD (HeartMate 3, Abbott, Abbott Park, IL, USA) with (Accessory) and without the accessory (Control) was compared under physiological conditions using a water/glycerol solution as a blood substitute. The pump was operated at 4000, 5200, and 6400 rpm and 5 different resistance levels. Flow, inlet, and outlet pressure were measured, and pressure head was calculated. Compared to the Control, flow and pressure head in the Accessory group were reduced by an overall average of 0.26 L/min and 9.9 mmHg (all speeds and resistance levels). The highest decline in flow and pressure head occurred at the lowest resistance levels. In conclusion, the accessory leads to a reduction of LVAD flow and pressure head that is enhanced by decreases in resistance. Future developments in the LVAD accessory's design may reduce these effects and allow unimpaired LVAD performance and minimally invasive device implantation.

SELECTION OF CITATIONS
SEARCH DETAIL
...