Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Psychiatry ; 13(1): 257, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37443359

ABSTRACT

Evidence from cross-sectional human studies, and preliminary microbial-based intervention studies, have implicated the microbiota-gut-brain axis in the neurobiology of autism spectrum disorder (ASD). Using a prospective longitudinal study design, we investigated the developmental profile of the fecal microbiota and metabolome in infants with (n = 16) and without (n = 19) a family history of ASD across the first 36 months of life. In addition, the general developmental levels of infants were evaluated using the Mullen Scales of Early Learning (MSEL) test at 5 and 36 months of age, and with ADOS-2 at 36 months of age. At 5 months of age, infants at elevated-likelihood of ASD (EL) harbored less Bifidobacterium and more Clostridium and Klebsiella species compared to the low-likelihood infants (LL). Untargeted metabolic profiling highlighted that LL infants excreted a greater amount of fecal γ-aminobutyric acid (GABA) at 5 months, which progressively declined with age. Similar age-dependent patterns were not observed in the EL group, with GABA being consistently low across all timepoints. Integrated microbiome-metabolome analysis showed a positive correlation between GABA and Bifidobacterium species and negative associations with Clostridium species. In vitro experiments supported these observations demonstrating that bifidobacteria can produce GABA while clostridia can consume it. At the behavioral level, there were no significant differences between the EL and LL groups at 5 months. However, at 36 months of age, the EL group had significantly lower MSEL and ADOS-2 scores compared to the LL group. Taken together, the present results reveal early life alterations in gut microbiota composition and functionality in infants at elevated-likelihood of ASD. These changes occur before any behavioral impairments can be detected, supporting a possible role for the gut microbiota in emerging behavioral variability later in life.


Subject(s)
Autism Spectrum Disorder , Gastrointestinal Microbiome , Humans , Infant , Autism Spectrum Disorder/microbiology , Longitudinal Studies , Prospective Studies , Cross-Sectional Studies
2.
Gut Microbes ; 15(1): 2211917, 2023.
Article in English | MEDLINE | ID: mdl-37226420

ABSTRACT

Diet shapes our gut microbiome from the day we are born. The contribution of dietary non-protein nitrogen to normal and healthy nitrogen cycling in the infant gut is scarcely described. Herein, we review in vitro and in vivo findings that show the impact of Human Milk Nitrogen (HMN) on the gut microbiota that colonizes the gut in early human life. We describe that several non-protein nitrogen sources, that include creatine, creatinine, urea, polyamines and free amino acids, are key in establishing the bifidobacterium-dominated microbiome and thus are bifidogenic. Furthermore, several parts of HMN-related metabolism are associated with a healthy infant gut and commensal microbiota. We illustrate an overlap and great diversity in accessibility of HMN by large parts of the infant gut microbiota. This review nonetheless shows the importance of research on HMN and its effects on the activity and composition of the infant gut microbiota and its potential effect on early life infant health.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Humans , Infant , Amino Acids , Bifidobacterium , Nitrogen
3.
PLoS One ; 17(11): e0277502, 2022.
Article in English | MEDLINE | ID: mdl-36367886

ABSTRACT

The human gut ecosystem starts developing at birth and is influenced by many factors during early life. In this study we make use of a Belgian cohort of 64 children, followed until the age of 6 years, to analyze different phases of microbiota development. We analyzed fecal samples taken before weaning (age 1 month), shortly after weaning (age 6 months), when milk feeding has been discontinued completely (age 1 year), and at the age of 6 years. We performed 16S rRNA gene amplicon sequencing on the collected fecal samples and analyzed the compositional data in relation to dietary metadata and birth mode. Human and formula milk feeding promotes a microbiota dominated by either Bacteroides or Bifidobacterium, respectively. Into later life stages, the microbiota composition follows distinct microbiota clusters, related to abundance dynamics of certain bacterial groups. Furthermore, it becomes apparent that a formula diet leads to early maturation of the infant gut microbiota. Despite other clinical variables within the infant cohort, they did not significantly contribute to the microbiota patterns we observed. Our data provide a proof of principle study of the importance of diet to the development of the microbiota in early life that replicates earlier findings in other cohorts.


Subject(s)
Diet , Microbiota , Infant , Infant, Newborn , Child , Female , Humans , RNA, Ribosomal, 16S/genetics , Feces/microbiology , Intestines
4.
Microb Biotechnol ; 14(3): 1159-1170, 2021 05.
Article in English | MEDLINE | ID: mdl-33683803

ABSTRACT

Marine photosynthetic microalgae are ubiquitously associated with bacteria in nature. However, the influence of these bacteria on algal cultures in bioreactors is still largely unknown. In this study, eighteen different bacterial strains were isolated from cultures of Nannochloropsis sp. CCAP211/78 in two outdoor pilot-scale tubular photobioreactors. The majority of isolates was affiliated with the classes Alphaproteobacteria and Flavobacteriia. To assess the impact of the eighteen strains on the growth of Nannochloropsis sp. CCAP211/78, 24-well plates coupled with custom-made LED boxes were used to simultaneously compare replicate axenic microalgal cultures with addition of individual bacterial isolates. Co-culturing of Nannochloropsis sp. CCAP211/78 with these strains demonstrated distinct responses, which shows that the technique we developed is an efficient method for screening the influence of harmful/beneficial bacteria. Two of the tested strains, namely a strain of Maritalea porphyrae (DMSP31) and a Labrenzia aggregata strain (YP26), significantly enhanced microalgal growth with a 14% and 12% increase of the chlorophyll concentration, respectively, whereas flavobacterial strain YP206 greatly inhibited the growth of the microalga with 28% reduction of the chlorophyll concentration. Our study suggests that algal production systems represent a 'natural' source to isolate and study microorganisms that can either benefit or harm algal cultures.


Subject(s)
Microalgae , Stramenopiles , Biomass , Hyphomicrobiaceae , Rhodobacteraceae
5.
FEMS Microbiol Ecol ; 97(3)2021 03 08.
Article in English | MEDLINE | ID: mdl-33538807

ABSTRACT

Human milk stimulates a health-promoting gut microbiome in infants. However, it is unclear how the microbiota salvages and processes its required nitrogen from breast milk. Human milk nitrogen sources such as urea could contribute to the composition of this early life microbiome. Urea is abundant in human milk, representing a large part of the non-protein nitrogen (NPN). We found that B. longum subsp. infantis (ATCC17930) can use urea as a main source of nitrogen for growth in synthetic medium and enzyme activity was induced by the presence of urea in the medium. We furthermore confirmed the expression of both urease protein subunits and accessory proteins of B. longum subsp. infantis through proteomics. To the same end, metagenome data were mined for urease-related genes. It was found that the breastfed infant's microbiome possessed more urease-related genes than formula fed infants (51.4:22.1; 2.3-fold increase). Bifidobacteria provided a total of 106 of urease subunit alpha alignments, found only in breastfed infants. These experiments show how an important gut commensal that colonizes the infant intestine can metabolize urea. The results presented herein further indicate how dietary nitrogen can determine bacterial metabolism in the neonate gut and shape the overall microbiome.


Subject(s)
Bifidobacterium longum subspecies infantis , Milk, Human , Animals , Bifidobacterium , Feces , Female , Humans , Infant , Infant, Newborn , Nitrogen , Oligosaccharides , Urea , Urease
6.
BMC Gastroenterol ; 13: 83, 2013 May 13.
Article in English | MEDLINE | ID: mdl-23668774

ABSTRACT

BACKGROUND: Mortality of patients with acute liver failure (ALF) is still unacceptably high. Available liver support systems are still of limited success at improving survival. A new type of albumin dialysis, the Hepa Wash® system, was newly introduced. We evaluated the new liver support system as well as the Molecular Adsorbent Recycling System (MARS) in an ischemic porcine model of ALF. METHODS: In the first study animals were randomly allocated to control (n=5) and Hepa Wash (n=6) groups. In a further pilot study, two animals were treated with the MARS-system. All animals received the same medical and surgical procedures. An intraparenchymal intracranial pressure was inserted. Hemodynamic monitoring and goal-directed fluid therapy using the PiCCO system was done. Animals underwent functional end-to-side portacaval shunt and ligation of hepatic arteries. Treatment with albumin dialysis was started after fall of cerebral perfusion pressure to 45 mmHg and continued for 8 h. RESULTS: All animals in the Hepa Wash group survived the 13-hour observation period, except for one that died after stopping treatment. Four of the control animals died within this period (p=0.03). Hepa Wash significantly reduced impairment of cerebral perfusion pressure (23±2 vs. 10±3 mmHg, p=0.006) and mean arterial pressure (37±1 vs. 24±2 mmHg, p=0.006) but had no effect on intracranial pressure (14±1 vs. 15±1 mmHg, p=0.72). Hepa Wash also enhanced cardiac index (4.94±0.32 vs. 3.36±0.25 l/min/m2, p=0.006) and renal function (urine production, 1850 ± 570 vs. 420 ± 180 ml, p=0.045) and eliminated water soluble (creatinine, 1.3±0.2 vs. 3.2±0.3 mg/dl, p=0.01; ammonia 562±124 vs. 1382±92 µg/dl, p=0.006) and protein-bound toxins (nitrate/nitrite 5.54±1.57 vs. 49.82±13.27 µmol/l, p=0.01). No adverse events that could be attributed to the Hepa Wash treatment were observed. CONCLUSIONS: Hepa Wash was a safe procedure and improved multiorgan system failure in pigs with ALF. The survival benefit could be the result of ameliorating different organ functions in association with the detoxification capacity of water soluble and protein-bound toxins.


Subject(s)
Dialysis , Liver Failure, Acute/therapy , Serum Albumin/metabolism , Sorption Detoxification , Ammonia/blood , Animals , Blood Pressure , Cardiac Output , Creatinine/blood , Dialysis/adverse effects , Disease Models, Animal , Female , Intracranial Pressure , Liver Failure, Acute/complications , Liver Failure, Acute/physiopathology , Multiple Organ Failure/etiology , Multiple Organ Failure/therapy , Nitrates/blood , Nitrites/blood , Random Allocation , Swine , Urine
SELECTION OF CITATIONS
SEARCH DETAIL
...