Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
1.
Am J Perinatol ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008985

ABSTRACT

OBJECTIVE: This study aimed to determine the prevalence and heteroplasmy level(s) of MT-RNR1 variants m.1555A > G and m.1494C > T, which are associated with aminoglycoside-induced hearing loss, in a general perinatal population. This study also aimed to characterize the association of these variants and their heteroplasmy levels with hearing loss outcomes with and without aminoglycoside exposure. STUDY DESIGN: Droplet digital polymerase chain reaction was performed on 479 maternal DNA samples from a general perinatal biobank at our institution to detect the presence and heteroplasmy levels of MT-RNR1 variants m.1555A > G and m.1494C > T. Testing of paired neonatal specimen(s) was planned for positive maternal tests. A retrospective chart review was performed to characterize the population, identify aminoglycoside exposures, and determine hearing outcomes. RESULTS: All maternal samples tested negative for MT-RNR1 variants m.1555A > G and m.1494C > T. Maternal and neonatal subjects had high rates of aminoglycoside exposure (15.9 and 13.9%, respectively). No subjects with sensorineural or mixed hearing loss had documented aminoglycoside exposure. CONCLUSION: This study demonstrated that a larger sample size is needed to establish the prevalence of these variants as no subjects tested positive. Determination of variant prevalence in the neonatal population, association of variant heteroplasmy levels with hearing outcomes, and reliability of maternal testing as a surrogate for neonatal testing are important next steps toward universal prenatal or newborn screening. KEY POINTS: · MT-RNR1 variants are associated with aminoglycoside-induced hearing loss.. · Prevalence of MT-RNR1 variants is uncertain.. · Universal screening for MT-RNR1 variants may be indicated..

2.
Eur J Hum Genet ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997468

ABSTRACT

Myhre syndrome (MS, MIM 139210) is a rare multisystemic disorder caused by recurrent pathogenic missense variants in SMAD4. The clinical features have been mainly documented in childhood and comprise variable neurocognitive development, recognizable craniofacial features, a short stature with a pseudo-muscular build, hearing loss, thickened skin, joint limitations, diverse cardiovascular and airway manifestations, and increased fibrosis often following trauma or surgery. In contrast, adults with MS are underreported obscuring potential clinical variability. Here, we describe 24 adults with MS, including 17 diagnosed after the age of 18 years old, and we review the literature on adults with MS. Overall, our cohort shows a milder phenotype as well as lower mortality rates compared to what has been published in literature. Individuals with a codon 500 variant in SMAD4 present with a more pronounced neurodevelopmental and systemic phenotype. However, in contrast to the literature, we observe cardiovascular abnormalities in individuals with the p.(Arg496Cys) variant. In addition, we describe scoliosis as a new manifestation and we report fertility in two additional males with the p.(Arg496Cys). In conclusion, our study contributes novel insights into the clinical variability of MS and underscores the importance of variant-specific considerations, and we provide recommendations for the management of MS in adulthood.

4.
Am J Med Genet A ; : e63638, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38779990

ABSTRACT

Myhre syndrome is an increasingly diagnosed ultrarare condition caused by recurrent germline autosomal dominant de novo variants in SMAD4. Detailed multispecialty evaluations performed at the Massachusetts General Hospital (MGH) Myhre Syndrome Clinic (2016-2023) and by collaborating specialists have facilitated deep phenotyping, genotyping and natural history analysis. Of 47 patients (four previously reported), most (81%) patients returned to MGH at least once. For patients followed for at least 5 years, symptom progression was observed in all. 55% were female and 9% were older than 18 years at diagnosis. Pathogenic variants in SMAD4 involved protein residues p.Ile500Val (49%), p.Ile500Thr (11%), p.Ile500Leu (2%), and p.Arg496Cys (38%). Individuals with the SMAD4 variant p.Arg496Cys were less likely to have hearing loss, growth restriction, and aortic hypoplasia than the other variant groups. Those with the p.Ile500Thr variant had moderate/severe aortic hypoplasia in three patients (60%), however, the small number (n = 5) prevented statistical comparison with the other variants. Two deaths reported in this cohort involved complex cardiovascular disease and airway stenosis, respectively. We provide a foundation for ongoing natural history studies and emphasize the need for evidence-based guidelines in anticipation of disease-specific therapies.

6.
Hum Genet ; 143(5): 649-666, 2024 May.
Article in English | MEDLINE | ID: mdl-38538918

ABSTRACT

Most rare disease patients (75-50%) undergoing genomic sequencing remain unsolved, often due to lack of information about variants identified. Data review over time can leverage novel information regarding disease-causing variants and genes, increasing this diagnostic yield. However, time and resource constraints have limited reanalysis of genetic data in clinical laboratories setting. We developed RENEW, (REannotation of NEgative WES/WGS) an automated reannotation procedure that uses relevant new information in on-line genomic databases to enable rapid review of genomic findings. We tested RENEW in an unselected cohort of 1066 undiagnosed cases with a broad spectrum of phenotypes from the Mayo Clinic Center for Individualized Medicine using new information in ClinVar, HGMD and OMIM between the date of previous analysis/testing and April of 2022. 5741 variants prioritized by RENEW were rapidly reviewed by variant interpretation specialists. Mean analysis time was approximately 20 s per variant (32 h total time). Reviewed cases were classified as: 879 (93.0%) undiagnosed, 63 (6.6%) putatively diagnosed, and 4 (0.4%) definitively diagnosed. New strategies are needed to enable efficient review of genomic findings in unsolved cases. We report on a fast and practical approach to address this need and improve overall diagnostic success in patient testing through a recurrent reannotation process.


Subject(s)
Genomics , Humans , Genomics/methods , Exome/genetics , Exome Sequencing/methods , Databases, Genetic , Genetic Testing/methods , Genome, Human , Whole Genome Sequencing/methods , Phenotype
7.
Am J Med Genet A ; 194(5): e63542, 2024 May.
Article in English | MEDLINE | ID: mdl-38234180

ABSTRACT

Axenfeld-Rieger Syndrome (ARS) type 1 is a rare autosomal dominant condition characterized by anterior chamber anomalies, umbilical defects, dental hypoplasia, and craniofacial anomalies, with Meckel's diverticulum in some individuals. Here, we describe a clinically ascertained female of childbearing age with ARS for whom clinical targeted sequencing and deletion/duplication analysis followed by clinical exome and genome sequencing resulted in no pathogenic variants or variants of unknown significance in PITX2 or FOXC1. Advanced bioinformatic analysis of the genome data identified a complex, balanced rearrangement disrupting PITX2. This case is the first reported intrachromosomal rearrangement leading to ARS, illustrating that for patients with compelling clinical phenotypes but negative genomic testing, additional bioinformatic analysis are essential to identify subtle genomic abnormalities in target genes.


Subject(s)
Anterior Eye Segment , Eye Abnormalities , Eye Diseases, Hereditary , Homeobox Protein PITX2 , Female , Humans , Anterior Eye Segment/abnormalities , Eye Abnormalities/diagnosis , Eye Abnormalities/genetics , Eye Abnormalities/pathology , Eye Diseases, Hereditary/diagnosis , Eye Diseases, Hereditary/genetics , Eye Diseases, Hereditary/pathology , Forkhead Transcription Factors/genetics , Homeodomain Proteins/genetics
8.
Ear Hear ; 45(2): 517-521, 2024.
Article in English | MEDLINE | ID: mdl-37930162

ABSTRACT

OBJECTIVES: Sensorineural hearing loss (SNHL) occurs commonly as part of mitochondriopathies and varies in severity and onset. In this study, we characterized hearing with specific consideration for hearing loss as a potential early indicator of mitochondrial disease (MD). We hypothesize that genetic testing at the earliest detection of SNHL may lead to an earlier MD diagnosis. DESIGN: We reviewed the clinical and audiometric data of 49 patients undergoing genetic testing for MD. RESULTS: One-third of individuals with molecularly confirmed MD presented with SNHL. On average, patients had hearing loss at least 10 years before genetic testing. The collective audiometric profile includes mild to moderate SNHL at lower frequencies and moderate SNHL at 2 kHz and higher frequencies. CONCLUSIONS: This study suggests that screening for SNHL could be an early indicator of MD. We propose that the audiometric profile for those with a MD diagnosis may have clinical triage utility.


Subject(s)
Deafness , Hearing Loss, Sensorineural , Mitochondrial Diseases , Humans , Young Adult , Audiometry , Hearing Loss, Sensorineural/diagnosis , Hearing Loss, Sensorineural/genetics , Hearing Tests , Mitochondrial Diseases/complications , Mitochondrial Diseases/diagnosis
9.
Mol Genet Genomic Med ; 11(12): e2271, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37641480

ABSTRACT

BACKGROUND: The PI3K/AKT pathway, extensively studied in cancer, is vital for regulating cell metabolism, differentiation, and proliferation. Pathogenic variants in the PIK3R1 gene, which encodes three regulatory units of class IA PI3Ks, have been found in affected tissue of individuals with vascular lesions. These variants predominantly occur in the iSH2 domain, disrupting inhibitory contacts with the catalytic unit and leading to PI3K activation. Germline variants in this gene are also linked to an immunological condition called Activated PI3K delta syndrome type 2 (APDS2). METHODS: This is a case report and literature review. Clinical data were retrieved from medical records. RESULTS: A male patient presented with extensive vascular malformation covering over 90% of his body, along with complete 2-3 toe syndactyly, suggesting a vascular malformation syndrome called PROS. Low levels of IgA and IgG were detected. The patient achieved his developmental milestones and had above-average weight, height, and head circumference. Exome sequencing of skin and blood DNA revealed a de novo variant in PIK3R1 (c.1746-2A>G, p.?) in 9% of the patient's blood cells and 25% of cultured fibroblasts. Initially, classified as a variant of uncertain significance, this variant was later confirmed to be the cause. CONCLUSIONS: This is the first intronic SNV in a canonical splice site within iSH2 described, highlighting the importance of iSH2 in the regulation of the PI3K/AKT pathway and its involvement in the development of vascular overgrowth and antibody deficiency.


Subject(s)
Primary Immunodeficiency Diseases , Vascular Malformations , Humans , Male , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Primary Immunodeficiency Diseases/genetics , Transcription Factors , Vascular Malformations/genetics , Immunoglobulins , Class Ia Phosphatidylinositol 3-Kinase/genetics
10.
Pediatrics ; 152(1)2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37340913

ABSTRACT

A full-term female was admitted at 3 days of life with a worsening rash since birth, concerning for infection. She developed clinical seizures and was transferred to our facility. She was admitted to the pediatric hospital medicine service and diagnostic workup was expanded with several specialists consulted. Presumptive diagnosis was made clinically, with definitive diagnosis established thereafter.


Subject(s)
Exanthema , Hospitalization , Infant, Newborn , Child , Humans , Female , Seizures , Exanthema/etiology , Referral and Consultation
11.
J Transl Med ; 21(1): 410, 2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37353797

ABSTRACT

BACKGROUND: In the United States, rare disease (RD) is defined as a condition that affects fewer than 200,000 individuals. Collectively, RD affects an estimated 30 million Americans. A significant portion of RD has an underlying genetic cause; however, this may go undiagnosed. To better serve these patients, the Mayo Clinic Program for Rare and Undiagnosed Diseases (PRaUD) was created under the auspices of the Center for Individualized Medicine (CIM) aiming to integrate genomics into subspecialty practice including targeted genetic testing, research, and education. METHODS: Patients were identified by subspecialty healthcare providers from 11 clinical divisions/departments. Targeted multi-gene panels or custom exome/genome-based panels were utilized. To support the goals of PRaUD, a new clinical service model, the Genetic Testing and Counseling (GTAC) unit, was established to improve access and increase efficiency for genetic test facilitation. The GTAC unit includes genetic counselors, genetic counseling assistants, genetic nurses, and a medical geneticist. Patients receive abbreviated point-of-care genetic counseling and testing through a partnership with subspecialty providers. RESULTS: Implementation of PRaUD began in 2018 and GTAC unit launched in 2020 to support program expansion. Currently, 29 RD clinical indications are included in 11 specialty divisions/departments with over 142 referring providers. To date, 1152 patients have been evaluated with an overall solved or likely solved rate of 17.5% and as high as 66.7% depending on the phenotype. Noteworthy, 42.7% of the solved or likely solved patients underwent changes in medical management and outcome based on genetic test results. CONCLUSION: Implementation of PRaUD and GTAC have enabled subspecialty practices advance expertise in RD where genetic counselors have not historically been embedded in practice. Democratizing access to genetic testing and counseling can broaden the reach of patients with RD and increase the diagnostic yield of such indications leading to better medical management as well as expanding research opportunities.


Subject(s)
Rare Diseases , Undiagnosed Diseases , United States , Humans , Rare Diseases/diagnosis , Rare Diseases/genetics , Rare Diseases/therapy , Tertiary Healthcare , Genomic Medicine , Genetic Testing , Genetic Counseling
12.
Ther Adv Rare Dis ; 4: 26330040221145945, 2023.
Article in English | MEDLINE | ID: mdl-37181073

ABSTRACT

Mucopolysaccharidoses (MPS) are a group of inherited lysosomal storage disorders caused by deficient levels and/or activity of glycosaminoglycan (GAG)-degradative enzymes. MPS are characterized by accumulation of the mucopolysaccharides heparan sulfate, dermatan sulfate, keratan sulfate, or chondroitin sulfate in tissues. We report the case of a 38-year-old woman with a history of joint restriction and retinitis pigmentosa who developed bivalvular heart failure requiring surgery. It was not until pathological examination of surgically excised valvular tissue that a diagnosis of MPS I was made. Her musculoskeletal and ophthalmologic symptoms, when placed in the context of MPS I, painted the diagnostic picture of a genetic syndrome that was overlooked until a diagnosis was made in late middle age.


• A 38-year-old woman with heart failure had heart valve surgery. Examining her cardiac valve tissue under the microscope suggested a metabolic disorder called mucopolysaccharidosis type I (MPS I). • MPS I is due to defective breakdown of sugar molecules (called glycosaminoglycans or GAGs for short) in the body which then can accumulate, causing dysfunction. • Our patient had short stature, a curved spine, stiff joints, and a degenerative eye disease called retinitis pigmentosa, all of which were due to her undiagnosed MPS I. • Most patients with MPS I are discovered on newborn screening when they are babies, or at very young ages due to severe symptoms related to the disease. • Our patient had a form of MPS I that was less severe, and the first symptom she received medical care for was her eye symptoms. • A diagnosis of MPS I made in middle adulthood is unusual for MPS I, and so is an important learning case for providers as there were clues hidden in her medical history that suggested a genetic or inherited syndrome. • Our genetics specialists were able to make a definitive diagnosis of MPS I and begin treatment with enzyme replacement therapy, as well as provide information for the patient about her risk of passing this disease on to children.

13.
Zebrafish ; 20(2): 47-54, 2023 04.
Article in English | MEDLINE | ID: mdl-37071854

ABSTRACT

Our understanding of inner ear hair cell ultrastructure has heretofore relied upon two-dimensional imaging; however, serial block-face scanning electron microscopy (SBFSEM) changes this paradigm allowing for three-dimensional evaluation. We compared inner ear hair cells of the apical cristae in myo7aa-/- null zebrafish, a model of human Usher Syndrome type 1B, to hair cells in wild-type zebrafish by SBFSEM to investigate possible ribbon synapse ultrastructural differences. Previously, it has been shown that compared to wild type, myo7aa-/- zebrafish neuromast hair cells have fewer ribbon synapses yet similar ribbon areas. We expect the recapitulation of these results within the inner ear apical crista hair cells furthering the knowledge of three-dimensional ribbon synapse structure while resolving the feasibility of therapeutically targeting myo7aa-/- mutant ribbons. In this report, we evaluated ribbon synapse number, volume, surface area, and sphericity. Localization of ribbons and their distance from the nearest innervation were also evaluated. We determined that myo7aa-/- mutant ribbon synapses are smaller in volume and surface area; however, all other measurements were not significantly different from wild-type zebrafish. Because the ribbon synapses are nearly indistinguishable between the myo7aa-/- mutant and wild type, it suggests that the ribbons are structurally receptive, supporting that therapeutic intervention may be feasible.


Subject(s)
Usher Syndromes , Zebrafish , Animals , Humans , Usher Syndromes/genetics , Usher Syndromes/metabolism , Synapses/metabolism , Synapses/ultrastructure , Hair Cells, Auditory, Inner/metabolism , Hair Cells, Auditory, Inner/ultrastructure , Hair , Myosins/genetics , Myosins/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
14.
Am J Ophthalmol Case Rep ; 30: 101825, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36974169

ABSTRACT

Purpose: To highlight the importance of the utility of clinical exome sequencing, and show how it led to the diagnosis of nonsyndromic autosomal dominant optic atrophy arising from an autosomal dominant variant in AFG3L2. Observations: A healthy father and daughter of East African heritage experienced the onset of vision loss in the first decade of life due to optic atrophy. No additional neurologic or neuroimaging abnormalities were detected. Clinical exome sequencing was initially performed and provided a negative result. Reanalysis of the sequencing data revealed an autosomal dominant pathogenic variant in AFG3L2, c.1064C>T (p.Thr355Met), a gene that was recently identified to be associated with non-syndromic optic atrophy. This variant has previously been reported in a patient with optic atrophy, motor disturbances, and an abnormal brain MRI. Conclusions: As the causes of dominant optic atrophy continue to expand, accurate genetic diagnosis is aided by an iterative reanalysis process for individuals and families when initial exome and genome testing does not provide an answer.

15.
J Speech Lang Hear Res ; 66(3): 791-803, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36795544

ABSTRACT

PURPOSE: The purpose of this study was to investigate comorbidity prevalence and patterns in childhood apraxia of speech (CAS) and their relationship to severity. METHOD: In this retroactive cross-sectional study, medical records for 375 children with CAS (M age = 4;9 [years;months], SD = 2;9) were examined for comorbid conditions. The total number of comorbid conditions and the number of communication-related comorbidities were regressed on CAS severity as rated by speech-language pathologists during diagnosis. The relationship between CAS severity and the presence of four common comorbid conditions was also examined using ordinal or multinomial regressions. RESULTS: Overall, 83 children were classified with mild CAS; 35, with moderate CAS; and 257, with severe CAS. Only one child had no comorbidities. The average number of comorbid conditions was 8.4 (SD = 3.4), and the average number of communication-related comorbidities was 5.6 (SD = 2.2). Over 95% of children had comorbid expressive language impairment. Children with comorbid intellectual disability (78.1%), receptive language impairment (72.5%), and nonspeech apraxia (37.3%; including limb, nonspeech oromotor, and oculomotor apraxia) were significantly more likely to have severe CAS than children without these comorbidities. However, children with comorbid autism spectrum disorder (33.6%) were no more likely to have severe CAS than children without autism. CONCLUSIONS: Comorbidity appears to be the rule, rather than the exception, for children with CAS. Comorbid intellectual disability, receptive language impairment, and nonspeech apraxia confer additional risk for more severe forms of CAS. Findings are limited by being from a convenience sample of participants but inform future models of comorbidity. SUPPLEMENTAL MATERIAL: https://doi.org/10.23641/asha.22096622.


Subject(s)
Apraxias , Autism Spectrum Disorder , Intellectual Disability , Language Development Disorders , Child , Humans , Child, Preschool , Speech , Speech Disorders/epidemiology , Speech Disorders/diagnosis , Retrospective Studies , Cross-Sectional Studies , Autism Spectrum Disorder/epidemiology , Apraxias/epidemiology , Apraxias/diagnosis , Comorbidity , Language Development Disorders/diagnosis
16.
Am J Ophthalmol Case Rep ; 29: 101745, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36636630

ABSTRACT

Purpose: To describe a case of Alström syndrome arising from maternal uniparental disomy. Observations: A 13-month-old boy with poor vision and nystagmus was diagnosed with Alström syndrome based on genetic testing that identified a homozygous pathogenic variant, ALMS1 c.2141_2141del (p.Ser714Tyrfs*6), that was only found in his mother and not his father. In contrast to the usual autosomal recessive inheritance pattern in which a child inherits a variant from each parent, multi-step genetic testing of the child and both parents confirmed uniparental disomy as the mechanism of inheritance. Conclusions and Importance: Confirmation of uniparental disomy in autosomal recessive disorders allows for parental assurance that future offspring will be unaffected.

17.
Pediatr Pulmonol ; 58(3): 819-824, 2023 03.
Article in English | MEDLINE | ID: mdl-36437230

ABSTRACT

BACKGROUND: MT-RNR1 variants are a well-known cause of aminoglycoside-induced hearing loss (AIHL). Individuals with cystic fibrosis (CF) routinely receive aminoglycosides and are at high risk of AIHL. However, genetic testing before treatment is not routinely performed due to perceived rarity of risk, and cost ineffectiveness with traditional technologies. AIM: Assess the utility of large-scale screening for AIHL risk in the CF population, using digital droplet polymerase chain reaction (ddPCR), a novel and scalable low-cost molecular technique. METHODS: Using a clinically validated ddPCR assay, we performed retrospective testing on 122 and prospective testing on 32 individuals with CF for the two most common pathogenic variants associated with AIHL, MT-RNR1 m.1555 A > G and m.1494 C > T. Our study screened the largest known cohort of pediatric cases of CF (94/154) for these specific alterations. RESULTS: We identified two individuals positive for MT-RNR1 m.1555 A > G and no positives for m.1494 C > T. Of 32 prospective cases, 17 had aminoglycoside exposure. The positive case in our prospective group recently began inhaled tobramycin and denied hearing issues. The clinician adjusted to care for both the patient and sibling with CF (not included in cohort) who is presumed positive for m.1555 A > G due to the nature of mitochondrial inheritance. CONCLUSION: Our findings demonstrate the utility of pretreatment screening in the cystic fibrosis population for AIHL risk using ddPCR, a scalable and robust testing methodology at a fraction of the cost as compared to other sequencing-based methods. Therefore, the use of large-scale screening for AIHL risk in the cystic fibrosis community should be re-visited.


Subject(s)
Cystic Fibrosis , Hearing Loss , Ototoxicity , Humans , Child , Aminoglycosides/adverse effects , Retrospective Studies , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Anti-Bacterial Agents/adverse effects , Hearing Loss/chemically induced , Hearing Loss/diagnosis , Hearing Loss/epidemiology
18.
Neurology ; 100(6): e603-e615, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36307226

ABSTRACT

BACKGROUND AND OBJECTIVES: KCNH5 encodes the voltage-gated potassium channel EAG2/Kv10.2. We aimed to delineate the neurodevelopmental and epilepsy phenotypic spectrum associated with de novo KCNH5 variants. METHODS: We screened 893 individuals with developmental and epileptic encephalopathies for KCNH5 variants using targeted or exome sequencing. Additional individuals with KCNH5 variants were identified through an international collaboration. Clinical history, EEG, and imaging data were analyzed; seizure types and epilepsy syndromes were classified. We included 3 previously published individuals including additional phenotypic details. RESULTS: We report a cohort of 17 patients, including 9 with a recurrent de novo missense variant p.Arg327His, 4 with a recurrent missense variant p.Arg333His, and 4 additional novel missense variants. All variants were located in or near the functionally critical voltage-sensing or pore domains, absent in the general population, and classified as pathogenic or likely pathogenic using the American College of Medical Genetics and Genomics criteria. All individuals presented with epilepsy with a median seizure onset at 6 months. They had a wide range of seizure types, including focal and generalized seizures. Cognitive outcomes ranged from normal intellect to profound impairment. Individuals with the recurrent p.Arg333His variant had a self-limited drug-responsive focal or generalized epilepsy and normal intellect, whereas the recurrent p.Arg327His variant was associated with infantile-onset DEE. Two individuals with variants in the pore domain were more severely affected, with a neonatal-onset movement disorder, early-infantile DEE, profound disability, and childhood death. DISCUSSION: We describe a cohort of 17 individuals with pathogenic or likely pathogenic missense variants in the voltage-sensing and pore domains of Kv10.2, including 14 previously unreported individuals. We present evidence for a putative emerging genotype-phenotype correlation with a spectrum of epilepsy and cognitive outcomes. Overall, we expand the role of EAG proteins in human disease and establish KCNH5 as implicated in a spectrum of neurodevelopmental disorders and epilepsy.


Subject(s)
Epilepsy, Generalized , Epilepsy , Ether-A-Go-Go Potassium Channels , Child , Humans , Infant, Newborn , Epilepsy/genetics , Epilepsy, Generalized/genetics , Mutation , Phenotype , Seizures/genetics , Ether-A-Go-Go Potassium Channels/genetics
20.
Clin Genet ; 102(5): 438-443, 2022 11.
Article in English | MEDLINE | ID: mdl-35861300

ABSTRACT

Leigh syndrome (LS) is a progressive neurodegenerative disease, characterized by extensive clinical, biochemical, and genetic heterogeneity. Recently, biallelic variants in DNAJC30 gene, encoding a protein crucial for the repair of mitochondrial complex I subunits, have been associated with Leber hereditary optic neuropathy and LS. It was suggested that clinical heterogeneity of DNAJC30-associated mitochondrial disease may be attributed to digenic inheritance. We describe three Polish patients, a 9-year-old boy, and female and male siblings, aged 17 and 11 years, with clinical and biochemical manifestations of LS. Exome sequencing (ES) identified a homozygous pathogenic variant in DNAJC30 c.152A>G, p.(Tyr51Cys) in the 9-year-old boy. In the siblings, ES identified two DNAJC30 variants: c.152A>G, p.(Tyr51Cys) and c.130_131del, p.(Ser44ValfsTer8) in a compound heterozygous state. In addition, both siblings carried a novel heterozygous c.484G>T, p.(Val162Leu) variant in NDUFS8 gene. This report provides further evidence for the association of DNAJC30 variants with LS. DNAJC30-associated LS is characterized by variable age at onset, movement disorder phenotype and normal or moderately elevated blood lactate level. Identification of a candidate heterozygous variant in NDUFS8 supports the hypothesis of digenic inheritance. Importantly, DNAJC30 pathogenic variants should be suspected in patients with LS irrespective of optic nerve involvement.


Subject(s)
Leigh Disease , Mitochondrial Diseases , Neurodegenerative Diseases , Female , Humans , Lactates , Leigh Disease/genetics , Leigh Disease/pathology , Male , Mitochondrial Diseases/genetics , Mutation , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...