Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 108(2): L023102, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37723767

ABSTRACT

Understanding the flow of yield stress fluids in porous media is a major challenge. In particular, experiments and extensive numerical simulations report a nonlinear Darcy law as a function of the pressure gradient. In this letter we consider a treelike porous structure for which the problem of the flow can be resolved exactly due to a mapping with the directed polymer (DP) with disordered bond energies on the Cayley tree. Our results confirm the nonlinear behavior of the flow and expresses its full pressure dependence via the density of low-energy paths of DP restricted to vanishing overlap. These universal predictions are confirmed by extensive numerical simulations.

2.
Phys Rev E ; 104(6-1): 064129, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35030910

ABSTRACT

We study the statistics of avalanches, as a response to an applied force, undergone by a particle hopping on a one-dimensional lattice where the pinning forces at each site are independent and identically distributed (i.i.d.), each drawn from a continuous f(x). The avalanches in this model correspond to the interrecord intervals in a modified record process of i.i.d. variables, defined by a single parameter c>0. This parameter characterizes the record formation via the recursive process R_{k}>R_{k-1}-c, where R_{k} denotes the value of the kth record. We show that for c>0, if f(x) decays slower than an exponential for large x, the record process is nonstationary as in the standard c=0 case. In contrast, if f(x) has a faster than exponential tail, the record process becomes stationary and the avalanche size distribution π(n) has a decay faster than 1/n^{2} for large n. The marginal case where f(x) decays exponentially for large x exhibits a phase transition from a nonstationary phase to a stationary phase as c increases through a critical value c_{crit}. Focusing on f(x)=e^{-x} (with x≥0), we show that c_{crit}=1 and for c<1, the record statistics is nonstationary. However, for c>1, the record statistics is stationary with avalanche size distribution π(n)∼n^{-1-λ(c)} for large n. Consequently, for c>1, the mean number of records up to N steps grows algebraically ∼N^{λ(c)} for large N. Remarkably, the exponent λ(c) depends continuously on c for c>1 and is given by the unique positive root of c=-ln(1-λ)/λ. We also unveil the presence of nontrivial correlations between avalanches in the stationary phase that resemble earthquake sequences.

SELECTION OF CITATIONS
SEARCH DETAIL
...