Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 25(17)2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32883039

ABSTRACT

A series of dinuclear copper(I) N,C,N- and P,C,P-carbodiphosphorane (CDP) complexes using multidentate ligands CDP(Py)2 (1) and (CDP(CH2PPh2)2 (13) have been isolated and characterized. Detailed structural information was gained by single-crystal XRD analyses of nine representative examples. The common structural motive is the central double ylidic carbon atom with its characteristic two lone pairs involved in the binding of two geminal L-Cu(I) fragments at Cu-Cu distances in the range 2.55-2.67 Å. In order to enhance conformational rigidity within the characteristic Cu-C-Cu triangle, two types of chelating side arms were symmetrically attached to each phosphorus atom: two 2-pyridyl functions in ligand CDP(Py)2 (1) and its dinuclear copper complexes 2-9 and 11, as well as two diphenylphosphinomethylene functions in ligand CDP(CH2PPh2)2 (13) and its di- and mononuclear complexes 14-18. Neutral complexes were typically obtained via the reaction of 1 with Cu(I) species CuCl, CuI, and CuSPh or via the salt elimination reaction of [(CuCl)2(CDP(Py)2] (2) with sodium carbazolate. Cationic Cu(I) complexes were prepared upon treating 1 with two equivalents of [Cu(NCMe)4]PF6, followed by the addition of either two equivalents of an aryl phosphine (PPh3, P(C6H4OMe)3) or one equivalent of bisphosphine ligands bis[(2-diphenylphosphino)phenyl] ether (DPEPhos), 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (XantPhos), or 1,1'-bis(diphenyl-phosphino) ferrocene (dppf). For the first time, carbodiphosphorane CDP(CH2PPh2)2 (13) could be isolated upon treating its precursor [CH(dppm)2]Cl (12) with NaNH2 in liquid NH3. A protonated and a deprotonated derivative of ligand 13 were prepared, and their coordination was compared to neutral CDP ligand 13. NMR analysis and DFT calculations reveal that the most stable tautomer of 13 does not show a CDP (or carbone) structure in its uncoordinated base form. For most of the prepared complexes, photoluminescence upon irradiation with UV light at room temperature was observed. Quantum yields (ΦPL) were determined to be 36% for dicationic [(CuPPh3)2(CDP(Py)2)](PF6)2 (4) and 60% for neutral [(CuSPh)2(CDP(CH2PPh2)2] (16).


Subject(s)
Copper/chemistry , Luminescence , Phosphoranes/chemistry , Ligands , Phosphoranes/chemical synthesis , Quantum Theory , Spectrum Analysis , Temperature , X-Ray Diffraction
2.
Dalton Trans ; 47(47): 17067-17076, 2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30465052

ABSTRACT

In a previous investigation, it was shown that [Cu(tpym)(PPh3)]PF61 with tpym = tris(2-pyridyl)methane represents a deep blue emitter (λmax = 466 nm) though with a low emission quantum yield ΦPL if doped in a polymer (7%) or dissolved in a fluid solvent (≪1%). In this study, we present new tripod compounds with sterically demanding ligands: [Cu(tpym)(P(o-tol)3)]PF62 and [Cu(tpym)(P(o-butyl-ph)3)]PF63 with P(o-tol)3 = tris(ortho-tolyl)phosphine and P(o-butyl-ph)3 = tris(ortho-n-butylphenyl)phosphine. These compounds show high emission quantum yields even in a fluid solution (dichloromethane) reaching a benchmark value for 3 of ΦPL = 76%. This becomes possible due to the specific design of rigidifying the complexes. Importantly, the deep blue emission color is maintained or even further blue shifted to λmax = 452 nm (compound 3 powder). Compound 2 is characterized photophysically in detail. In particular, it is shown that the lowest excited triplet state T1 experiences very efficient spin-orbit coupling (SOC). Accordingly, the phosphorescence decay rate is as large as 5 × 104 s-1 (20 µs) belonging to the fastest T1→ S0 transition values (shortest decay times) reported so far. Investigations down to T = 1.5 K reveal a large total zero-field splitting (ZFS) of 7 cm-1 (0.9 meV). Although thermally activated delayed fluorescence (TADF) grows in at T≥ 160 K, the phosphorescence of 2 still dominates (60%) over TADF (40%) at ambient temperature. Thus, the compound represents a singlet harvesting-plus-triplet harvesting material, if applied in an OLED.

3.
Chemistry ; 24(40): 10073-10077, 2018 Jul 17.
Article in English | MEDLINE | ID: mdl-29845655

ABSTRACT

The structural and photophysical properties of a series of new AuI compounds have been studied. The reactions of AuCl(tht) with the phosphanyl- and arsanylboranes RR' EBH2 NMe3 (E=P, As; R=H, Ph; R'=H, Ph, tBu) afford the complexes [AuCl(RR' EBH2 NMe3 )]. In the solid state, [AuCl(H2 PBH2 NMe3 )]2 (2 a) is a dimer showing unsupported intermolecular aurophilic interactions with short Au⋅⋅⋅Au distances. In contrast, [AuCl(H2 AsBH2 NMe3 )]n (2 b) aggregates to form 1D chains. Organic substituents on the pnictogen atoms lead to discrete molecules in [AuCl(RR' PBH2 NMe3 )] (2 c: R=H, R'=tBu; 2 d: R=R'=Ph). To increase the aurophilicity, the ionic homoleptic complexes [Au(RR' EBH2 NMe3 )2 ][AlCl4 ] (3 a-d) have been synthesized, for which 3 a,b form chains in the solid state and exhibit luminescence. The emissions show a drastic redshift with temperature decrease, correlating with decreasing Au⋅⋅⋅Au distances. DFT calculations provide insight into the bonding situation of the products.

4.
J Phys Chem Lett ; 9(11): 2848-2856, 2018 Jun 07.
Article in English | MEDLINE | ID: mdl-29750529

ABSTRACT

The three-fold bridged dinuclear Cu(I) complex Cu2(µ-I)2(1 N- n-butyl-5-diphenyl-phosphino-1,2,4-triazole)3, Cu2I2(P^N)3, shows bright thermally activated delayed fluorescence (TADF) as well as phosphorescence at ambient temperature with a total quantum yield of 85% at an emission decay time of 7 µs. The singlet (S1)-triplet (T1) energy gap is as small as only 430 cm-1 (53 meV). Spin-orbit coupling induces a short-lived phosphorescence with a decay time of 52 µs ( T = 77 K) and a distinct zero-field splitting (ZFS) of T1 into substates by ∼2.5 cm-1 (0.3 meV). Below T ≈ 10 K, effects of spin-lattice relaxation (SLR) are observed and agree with the size of ZFS. According to the combined phosphorescence and TADF, the overall emission decay time is reduced by ∼13% as compared to the TADF-only process. The compound may potentially be applied in solution-processed OLEDs, exploiting both the singlet and triplet harvesting mechanisms.

5.
J Phys Chem Lett ; 9(4): 702-709, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29350932

ABSTRACT

The dinuclear Ag(I) complex has been designed to show thermally activated delayed fluorescence (TADF) of high efficiency. Strongly electron-donating terminal ligands are introduced to destabilize the d orbitals of the Ag+ ions. Consequently, the orbitals distinctly contribute to the HOMO, whereas the LUMO is localized on the bridging ligand. This ensures charge transfer character of the lowest excited singlet S1 and triplet T1 states. Accordingly, a small energy gap ΔE(S1-T1) is obtained, being essential for TADF behavior. Photophysical investigations show that at ambient temperature the complex exhibits TADF reaching a quantum yield of ΦPL = 70% with the decay time of only τ = 1.9 µs, manifesting one of the fastest TADF decays observed so far. Such an outstanding TADF efficiency is based on a small value of ΔE(S1-T1) = 480 cm-1 combined with a large transition rate of k(S1 → S0) = 2.2 × 107 s-1.

6.
Top Curr Chem (Cham) ; 374(3): 25, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27573265

ABSTRACT

Molecules that exhibit thermally activated delayed fluorescence (TADF) represent a very promising emitter class for application in electroluminescent devices since all electrically generated excitons can be transferred into light according to the singlet harvesting mechanism. Cu(I) compounds are an important class of TADF emitters. In this contribution, we want to give a deeper insight into the photophysical properties of this material class and demonstrate how the emission properties depend on molecular and host rigidity. Moreover, we show that with molecular optimization a significant improvement of selected emission properties can be achieved. From the discussed materials, we select one specific dinuclear complex, for which the two Cu(I) centers are four-fold bridged to fabricate an organic light emitting diode (OLED). This device shows the highest efficiency (of 23 % external quantum efficiency) reported so far for OLEDs based on Cu(I) emitters.


Subject(s)
Coordination Complexes/chemistry , Copper/chemistry , Luminescence , Quantum Theory , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...