Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
BMC Bioinformatics ; 18(1): 529, 2017 Nov 29.
Article in English | MEDLINE | ID: mdl-29187165

ABSTRACT

BACKGROUND: ImageJ is an image analysis program extensively used in the biological sciences and beyond. Due to its ease of use, recordable macro language, and extensible plug-in architecture, ImageJ enjoys contributions from non-programmers, amateur programmers, and professional developers alike. Enabling such a diversity of contributors has resulted in a large community that spans the biological and physical sciences. However, a rapidly growing user base, diverging plugin suites, and technical limitations have revealed a clear need for a concerted software engineering effort to support emerging imaging paradigms, to ensure the software's ability to handle the requirements of modern science. RESULTS: We rewrote the entire ImageJ codebase, engineering a redesigned plugin mechanism intended to facilitate extensibility at every level, with the goal of creating a more powerful tool that continues to serve the existing community while addressing a wider range of scientific requirements. This next-generation ImageJ, called "ImageJ2" in places where the distinction matters, provides a host of new functionality. It separates concerns, fully decoupling the data model from the user interface. It emphasizes integration with external applications to maximize interoperability. Its robust new plugin framework allows everything from image formats, to scripting languages, to visualization to be extended by the community. The redesigned data model supports arbitrarily large, N-dimensional datasets, which are increasingly common in modern image acquisition. Despite the scope of these changes, backwards compatibility is maintained such that this new functionality can be seamlessly integrated with the classic ImageJ interface, allowing users and developers to migrate to these new methods at their own pace. CONCLUSIONS: Scientific imaging benefits from open-source programs that advance new method development and deployment to a diverse audience. ImageJ has continuously evolved with this idea in mind; however, new and emerging scientific requirements have posed corresponding challenges for ImageJ's development. The described improvements provide a framework engineered for flexibility, intended to support these requirements as well as accommodate future needs. Future efforts will focus on implementing new algorithms in this framework and expanding collaborations with other popular scientific software suites.


Subject(s)
Image Processing, Computer-Assisted/methods , User-Computer Interface , Humans , Reproducibility of Results
2.
Bioinformatics ; 33(15): 2424-2426, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28369169

ABSTRACT

SUMMARY: State-of-the-art light and electron microscopes are capable of acquiring large image datasets, but quantitatively evaluating the data often involves manually annotating structures of interest. This process is time-consuming and often a major bottleneck in the evaluation pipeline. To overcome this problem, we have introduced the Trainable Weka Segmentation (TWS), a machine learning tool that leverages a limited number of manual annotations in order to train a classifier and segment the remaining data automatically. In addition, TWS can provide unsupervised segmentation learning schemes (clustering) and can be customized to employ user-designed image features or classifiers. AVAILABILITY AND IMPLEMENTATION: TWS is distributed as open-source software as part of the Fiji image processing distribution of ImageJ at http://imagej.net/Trainable_Weka_Segmentation . CONTACT: ignacio.arganda@ehu.eus. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Image Processing, Computer-Assisted/methods , Machine Learning , Microscopy/methods , Software , Animals , Drosophila/anatomy & histology , Drosophila/ultrastructure
3.
Methods ; 115: 80-90, 2017 02 15.
Article in English | MEDLINE | ID: mdl-27713081

ABSTRACT

We present TrackMate, an open source Fiji plugin for the automated, semi-automated, and manual tracking of single-particles. It offers a versatile and modular solution that works out of the box for end users, through a simple and intuitive user interface. It is also easily scriptable and adaptable, operating equally well on 1D over time, 2D over time, 3D over time, or other single and multi-channel image variants. TrackMate provides several visualization and analysis tools that aid in assessing the relevance of results. The utility of TrackMate is further enhanced through its ability to be readily customized to meet specific tracking problems. TrackMate is an extensible platform where developers can easily write their own detection, particle linking, visualization or analysis algorithms within the TrackMate environment. This evolving framework provides researchers with the opportunity to quickly develop and optimize new algorithms based on existing TrackMate modules without the need of having to write de novo user interfaces, including visualization, analysis and exporting tools. The current capabilities of TrackMate are presented in the context of three different biological problems. First, we perform Caenorhabditis-elegans lineage analysis to assess how light-induced damage during imaging impairs its early development. Our TrackMate-based lineage analysis indicates the lack of a cell-specific light-sensitive mechanism. Second, we investigate the recruitment of NEMO (NF-κB essential modulator) clusters in fibroblasts after stimulation by the cytokine IL-1 and show that photodamage can generate artifacts in the shape of TrackMate characterized movements that confuse motility analysis. Finally, we validate the use of TrackMate for quantitative lifetime analysis of clathrin-mediated endocytosis in plant cells.


Subject(s)
Cell Tracking/methods , Embryo, Nonmammalian/ultrastructure , Image Processing, Computer-Assisted/statistics & numerical data , Single-Cell Analysis/methods , Software , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/metabolism , Algorithms , Animals , Arabidopsis/metabolism , Arabidopsis/ultrastructure , Caenorhabditis elegans , Cell Tracking/statistics & numerical data , Clathrin/genetics , Clathrin/metabolism , Embryo, Nonmammalian/metabolism , Endocytosis , Fibroblasts/metabolism , Fibroblasts/ultrastructure , Gene Expression Regulation, Plant , Light Signal Transduction , Plant Cells/metabolism , Plant Cells/ultrastructure , Single-Cell Analysis/statistics & numerical data
4.
Front Neuroanat ; 9: 142, 2015.
Article in English | MEDLINE | ID: mdl-26594156

ABSTRACT

To stimulate progress in automating the reconstruction of neural circuits, we organized the first international challenge on 2D segmentation of electron microscopic (EM) images of the brain. Participants submitted boundary maps predicted for a test set of images, and were scored based on their agreement with a consensus of human expert annotations. The winning team had no prior experience with EM images, and employed a convolutional network. This "deep learning" approach has since become accepted as a standard for segmentation of EM images. The challenge has continued to accept submissions, and the best so far has resulted from cooperation between two teams. The challenge has probably saturated, as algorithms cannot progress beyond limits set by ambiguities inherent in 2D scoring and the size of the test dataset. Retrospective evaluation of the challenge scoring system reveals that it was not sufficiently robust to variations in the widths of neurite borders. We propose a solution to this problem, which should be useful for a future 3D segmentation challenge.

5.
Mol Reprod Dev ; 82(7-8): 518-29, 2015.
Article in English | MEDLINE | ID: mdl-26153368

ABSTRACT

Technology in microscopy advances rapidly, enabling increasingly affordable, faster, and more precise quantitative biomedical imaging, which necessitates correspondingly more-advanced image processing and analysis techniques. A wide range of software is available-from commercial to academic, special-purpose to Swiss army knife, small to large-but a key characteristic of software that is suitable for scientific inquiry is its accessibility. Open-source software is ideal for scientific endeavors because it can be freely inspected, modified, and redistributed; in particular, the open-software platform ImageJ has had a huge impact on the life sciences, and continues to do so. From its inception, ImageJ has grown significantly due largely to being freely available and its vibrant and helpful user community. Scientists as diverse as interested hobbyists, technical assistants, students, scientific staff, and advanced biology researchers use ImageJ on a daily basis, and exchange knowledge via its dedicated mailing list. Uses of ImageJ range from data visualization and teaching to advanced image processing and statistical analysis. The software's extensibility continues to attract biologists at all career stages as well as computer scientists who wish to effectively implement specific image-processing algorithms. In this review, we use the ImageJ project as a case study of how open-source software fosters its suites of software tools, making multitudes of image-analysis technology easily accessible to the scientific community. We specifically explore what makes ImageJ so popular, how it impacts the life sciences, how it inspires other projects, and how it is self-influenced by coevolving projects within the ImageJ ecosystem.


Subject(s)
Image Processing, Computer-Assisted/methods , Microscopy , Optical Imaging , Software , Humans , Image Processing, Computer-Assisted/instrumentation
6.
J Virol ; 88(24): 14207-21, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25275125

ABSTRACT

UNLABELLED: Murine cells exhibit a profound block to HIV-1 virion production that was recently mapped to a species-specific structural attribute of the murine version of the chromosomal region maintenance 1 (mCRM1) nuclear export receptor and rescued by the expression of human CRM1 (hCRM1). In human cells, the HIV-1 Rev protein recruits hCRM1 to intron-containing viral mRNAs encoding the Rev response element (RRE), thereby facilitating viral late gene expression. Here we exploited murine 3T3 fibroblasts as a gain-of-function system to study hCRM1's species-specific role in regulating Rev's effector functions. We show that Rev is rapidly exported from the nucleus by mCRM1 despite only weak contributions to HIV-1's posttranscriptional stages. Indeed, Rev preferentially accumulates in the cytoplasm of murine 3T3 cells with or without hCRM1 expression, in contrast to human HeLa cells, where Rev exhibits striking en masse transitions between the nuclear and cytoplasmic compartments. Efforts to bias Rev's trafficking either into or out of the nucleus revealed that Rev encoding a second CRM1 binding domain (Rev-2xNES) or Rev-dependent viral gag-pol mRNAs bearing tandem RREs (GP-2xRRE), rescue virus particle production in murine cells even in the absence of hCRM1. Combined, these results suggest a model wherein Rev-associated nuclear export signals cooperate to regulate the number or quality of CRM1's interactions with viral Rev/RRE ribonucleoprotein complexes in the nucleus. This mechanism regulates CRM1-dependent viral gene expression and is a determinant of HIV-1's capacity to produce virions in nonhuman cell types. IMPORTANCE: Cells derived from mice and other nonhuman species exhibit profound blocks to HIV-1 replication. Here we elucidate a block to HIV-1 gene expression attributable to the murine version of the CRM1 (mCRM1) nuclear export receptor. In human cells, hCRM1 regulates the nuclear export of viral intron-containing mRNAs through the activity of the viral Rev adapter protein that forms a multimeric complex on these mRNAs prior to recruiting hCRM1. We demonstrate that Rev-dependent gene expression is poor in murine cells despite the finding that, surprisingly, the bulk of Rev interacts efficiently with mCRM1 and is rapidly exported from the nucleus. Instead, we map the mCRM1 defect to the apparent inability of this factor to engage Rev multimers in the context of large viral Rev/RNA ribonucleoprotein complexes. These findings shed new light on HIV-1 gene regulation and could inform the development of novel antiviral strategies that target viral gene expression.


Subject(s)
Gene Expression Regulation, Viral , HIV-1/physiology , Karyopherins/metabolism , Nuclear Export Signals , Receptors, Cytoplasmic and Nuclear/metabolism , Viral Tropism , rev Gene Products, Human Immunodeficiency Virus/genetics , rev Gene Products, Human Immunodeficiency Virus/metabolism , Animals , Cell Line , Fibroblasts/virology , HIV-1/genetics , Humans , Mice , Exportin 1 Protein
7.
J Vis Exp ; (89)2014 Jul 24.
Article in English | MEDLINE | ID: mdl-25078855

ABSTRACT

Segmentation is a periodic and sequential morphogenetic process in vertebrates. This rhythmic formation of blocks of tissue called somites along the body axis is evidence of a genetic oscillator patterning the developing embryo. In zebrafish, the intracellular clock driving segmentation is comprised of members of the Her/Hes transcription factor family organized into negative feedback loops. We have recently generated transgenic fluorescent reporter lines for the cyclic gene her1 that recapitulate the spatio-temporal pattern of oscillations in the presomitic mesoderm (PSM). Using these lines, we developed an in vitro culture system that allows real-time analysis of segmentation clock oscillations within single, isolated PSM cells. By removing PSM tissue from transgenic embryos and then dispersing cells from oscillating regions onto glass-bottom dishes, we generated cultures suitable for time-lapse imaging of fluorescence signal from individual clock cells. This approach provides an experimental and conceptual framework for direct manipulation of the segmentation clock with unprecedented single-cell resolution, allowing its cell-autonomous and tissue-level properties to be distinguished and dissected.


Subject(s)
Biological Clocks/physiology , Cell Culture Techniques/methods , Mesoderm/cytology , Somites/cytology , Zebrafish/embryology , Animals , Animals, Genetically Modified , Female , Fluorescent Dyes/chemistry , Male , Optical Imaging/methods , Time-Lapse Imaging/methods , Zebrafish/genetics
8.
Science ; 345(6193): 222-5, 2014 Jul 11.
Article in English | MEDLINE | ID: mdl-25013078

ABSTRACT

During embryonic development, temporal and spatial cues are coordinated to generate a segmented body axis. In sequentially segmenting animals, the rhythm of segmentation is reported to be controlled by the time scale of genetic oscillations that periodically trigger new segment formation. However, we present real-time measurements of genetic oscillations in zebrafish embryos showing that their time scale is not sufficient to explain the temporal period of segmentation. A second time scale, the rate of tissue shortening, contributes to the period of segmentation through a Doppler effect. This contribution is modulated by a gradual change in the oscillation profile across the tissue. We conclude that the rhythm of segmentation is an emergent property controlled by the time scale of genetic oscillations, the change of oscillation profile, and tissue shortening.


Subject(s)
Body Patterning/genetics , Doppler Effect , Periodicity , Animals , Embryo, Nonmammalian/physiology , Zebrafish/embryology , Zebrafish/genetics
10.
Nat Methods ; 9(7): 676-82, 2012 Jun 28.
Article in English | MEDLINE | ID: mdl-22743772

ABSTRACT

Fiji is a distribution of the popular open-source software ImageJ focused on biological-image analysis. Fiji uses modern software engineering practices to combine powerful software libraries with a broad range of scripting languages to enable rapid prototyping of image-processing algorithms. Fiji facilitates the transformation of new algorithms into ImageJ plugins that can be shared with end users through an integrated update system. We propose Fiji as a platform for productive collaboration between computer science and biology research communities.


Subject(s)
Computational Biology/methods , Image Processing, Computer-Assisted/methods , Software , Algorithms , Animals , Brain/ultrastructure , Drosophila melanogaster/ultrastructure , Image Enhancement/methods , Imaging, Three-Dimensional/methods , Information Dissemination , Software Design
11.
PLoS One ; 7(6): e38011, 2012.
Article in English | MEDLINE | ID: mdl-22723842

ABSTRACT

A key challenge in neuroscience is the expeditious reconstruction of neuronal circuits. For model systems such as Drosophila and C. elegans, the limiting step is no longer the acquisition of imagery but the extraction of the circuit from images. For this purpose, we designed a software application, TrakEM2, that addresses the systematic reconstruction of neuronal circuits from large electron microscopical and optical image volumes. We address the challenges of image volume composition from individual, deformed images; of the reconstruction of neuronal arbors and annotation of synapses with fast manual and semi-automatic methods; and the management of large collections of both images and annotations. The output is a neural circuit of 3d arbors and synapses, encoded in NeuroML and other formats, ready for analysis.


Subject(s)
Models, Neurological , Nerve Net , Software , Synaptic Transmission/physiology , Animals , Neuroimaging , Neurons , Synapses
12.
J Neurosci ; 30(22): 7538-53, 2010 Jun 02.
Article in English | MEDLINE | ID: mdl-20519528

ABSTRACT

The Drosophila brain is formed by an invariant set of lineages, each of which is derived from a unique neural stem cell (neuroblast) and forms a genetic and structural unit of the brain. The task of reconstructing brain circuitry at the level of individual neurons can be made significantly easier by assigning neurons to their respective lineages. In this article we address the automation of neuron and lineage identification. We focused on the Drosophila brain lineages at the larval stage when they form easily recognizable secondary axon tracts (SATs) that were previously partially characterized. We now generated an annotated digital database containing all lineage tracts reconstructed from five registered wild-type brains, at higher resolution and including some that were previously not characterized. We developed a method for SAT structural comparisons based on a dynamic programming approach akin to nucleotide sequence alignment and a machine learning classifier trained on the annotated database of reference SATs. We quantified the stereotypy of SATs by measuring the residual variability of aligned wild-type SATs. Next, we used our method for the identification of SATs within wild-type larval brains, and found it highly accurate (93-99%). The method proved highly robust for the identification of lineages in mutant brains and in brains that differed in developmental time or labeling. We describe for the first time an algorithm that quantifies neuronal projection stereotypy in the Drosophila brain and use the algorithm for automatic neuron and lineage recognition.


Subject(s)
Axons/physiology , Cell Lineage/physiology , Neurons/classification , Neurons/cytology , Algorithms , Animals , Animals, Genetically Modified , Axons/metabolism , Brain/cytology , Brain Mapping , Caspase 3/metabolism , Cell Lineage/genetics , Dendrites/metabolism , Drosophila/anatomy & histology , Drosophila/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Electronic Data Processing/methods , Embryo, Nonmammalian , Green Fluorescent Proteins/genetics , Image Processing, Computer-Assisted/methods , Microscopy, Confocal/methods , Models, Neurological , Reproducibility of Results , Software
14.
BMC Bioinformatics ; 11: 274, 2010 May 21.
Article in English | MEDLINE | ID: mdl-20492697

ABSTRACT

BACKGROUND: Current imaging methods such as Magnetic Resonance Imaging (MRI), Confocal microscopy, Electron Microscopy (EM) or Selective Plane Illumination Microscopy (SPIM) yield three-dimensional (3D) data sets in need of appropriate computational methods for their analysis. The reconstruction, segmentation and registration are best approached from the 3D representation of the data set. RESULTS: Here we present a platform-independent framework based on Java and Java 3D for accelerated rendering of biological images. Our framework is seamlessly integrated into ImageJ, a free image processing package with a vast collection of community-developed biological image analysis tools. Our framework enriches the ImageJ software libraries with methods that greatly reduce the complexity of developing image analysis tools in an interactive 3D visualization environment. In particular, we provide high-level access to volume rendering, volume editing, surface extraction, and image annotation. The ability to rely on a library that removes the low-level details enables concentrating software development efforts on the algorithm implementation parts. CONCLUSIONS: Our framework enables biomedical image software development to be built with 3D visualization capabilities with very little effort. We offer the source code and convenient binary packages along with extensive documentation at http://3dviewer.neurofly.de.


Subject(s)
Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Programming Languages , Computer Graphics , Microscopy, Confocal/methods , Pattern Recognition, Automated/methods , Software
15.
J Physiol Paris ; 104(3-4): 128-36, 2010.
Article in English | MEDLINE | ID: mdl-19945532

ABSTRACT

The peristimulus time histogram (PSTH) and the spike density function (SDF) are commonly used in the analysis of neurophysiological data. The PSTH is usually obtained by binning spike trains, the SDF being a (Gaussian) kernel smoothed version of the PSTH. While selection of the bin width or kernel size is often relatively arbitrary there have been recent attempts to remedy this situation (Shimazaki and Shinomoto, 2007c,b,a). We further develop an exact Bayesian generative model approach to estimating PSTHs (Endres et al., 2008) and demonstrate its superiority to competing methods using data from early (LGN) and late (STSa) visual areas. We also highlight the advantages of our scheme's automatic complexity control and generation of error bars. Additionally, our approach allows extraction of excitatory and inhibitory response latency from spike trains in a principled way, both on repeated and single trial data. We show that the method can be applied to data with high background firing rates and inhibitory responses (LGN) as well as to data with low firing rate and excitatory responses (STSa). Furthermore, we demonstrate on simulated data that our latency extraction method works for a range of signal-to-noise ratios and background firing rates. While further studies are needed to examine the sensitivity of our method to, for example, gradual changes in firing rate and adaptation, the current results suggest that Bayesian binning is a powerful method for the estimation of firing rate and the extraction response latency from neuronal spike trains.


Subject(s)
Action Potentials/physiology , Bayes Theorem , Models, Neurological , Neurons/physiology , Reaction Time/physiology , Animals , Computer Simulation , Electric Stimulation , Signal Processing, Computer-Assisted
16.
BMC Bioinformatics ; 7: 544, 2006 Dec 29.
Article in English | MEDLINE | ID: mdl-17196102

ABSTRACT

BACKGROUND: In the fly Drosophila melanogaster, new genetic, physiological, molecular and behavioral techniques for the functional analysis of the brain are rapidly accumulating. These diverse investigations on the function of the insect brain use gene expression patterns that can be visualized and provide the means for manipulating groups of neurons as a common ground. To take advantage of these patterns one needs to know their typical anatomy. RESULTS: This paper describes the Virtual Insect Brain (VIB) protocol, a script suite for the quantitative assessment, comparison, and presentation of neuroanatomical data. It is based on the 3D-reconstruction and visualization software Amira, version 3.x (Mercury Inc.) 1. Besides its backbone, a standardization procedure which aligns individual 3D images (series of virtual sections obtained by confocal microscopy) to a common coordinate system and computes average intensities for each voxel (volume pixel) the VIB protocol provides an elaborate data management system for data administration. The VIB protocol facilitates direct comparison of gene expression patterns and describes their interindividual variability. It provides volumetry of brain regions and helps to characterize the phenotypes of brain structure mutants. Using the VIB protocol does not require any programming skills since all operations are carried out at an intuitively usable graphical user interface. Although the VIB protocol has been developed for the standardization of Drosophila neuroanatomy, the program structure can be used for the standardization of other 3D structures as well. CONCLUSION: Standardizing brains and gene expression patterns is a new approach to biological shape and its variability. The VIB protocol provides a first set of tools supporting this endeavor in Drosophila. The script suite is freely available at http://www.neurofly.de2.


Subject(s)
Brain/anatomy & histology , Drosophila melanogaster/anatomy & histology , Imaging, Three-Dimensional/methods , Models, Anatomic , Neuroanatomy/methods , Software , User-Computer Interface , Animals , Computer Graphics , Computer Simulation , Models, Neurological , Neuroanatomy/standards , Subtraction Technique
SELECTION OF CITATIONS
SEARCH DETAIL
...