Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Neurobiol Dis ; 198: 106537, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38772452

ABSTRACT

Hereditary spastic paraplegia (HSP) comprises a large group of neurogenetic disorders characterized by progressive lower extremity spasticity. Neurological evaluation and genetic testing were completed in a Malian family with early-onset HSP. Three children with unaffected consanguineous parents presented with symptoms consistent with childhood-onset complicated HSP. Neurological evaluation found lower limb weakness, spasticity, dysarthria, seizures, and intellectual disability. Brain MRI showed corpus callosum thinning with cortical and spinal cord atrophy, and an EEG detected slow background in the index patient. Whole exome sequencing identified a homozygous missense variant in the adaptor protein (AP) complex 2 alpha-2 subunit (AP2A2) gene. Western blot analysis showed reduced levels of AP2A2 in patient-iPSC derived neuronal cells. Endocytosis of transferrin receptor (TfR) was decreased in patient-derived neurons. In addition, we observed increased axon initial segment length in patient-derived neurons. Xenopus tropicalis tadpoles with ap2a2 knockout showed cerebral edema and progressive seizures. Immunoprecipitation of the mutant human AP-2-appendage alpha-C construct showed defective binding to accessory proteins. We report AP2A2 as a novel genetic entity associated with HSP and provide functional data in patient-derived neuron cells and a frog model. These findings expand our understanding of the mechanism of HSP and improve the genetic diagnosis of this condition.


Subject(s)
Adaptor Protein Complex 2 , Endocytosis , Spastic Paraplegia, Hereditary , Animals , Child , Child, Preschool , Female , Humans , Male , Adaptor Protein Complex 2/genetics , Endocytosis/genetics , Endocytosis/physiology , Mutation/genetics , Mutation, Missense , Neurons/metabolism , Neurons/pathology , Pedigree , Spastic Paraplegia, Hereditary/genetics , Spastic Paraplegia, Hereditary/pathology , Xenopus
2.
J Neuromuscul Dis ; 10(1): 107-118, 2023.
Article in English | MEDLINE | ID: mdl-36314214

ABSTRACT

BACKGROUND: The number of mutations in nuclear encoded genes causing mitochondrial disease is ever increasing. Identification of these mutations is particularly important in the diagnosis of neuromuscular disorders as their presentation may mimic other acquired disorders.We present a novel heterozygous variant in mitochondrial fission factor (MFF) which mimics myasthenia gravis. OBJECTIVE: To determine if the MFF c.937G>A, p.E313K variant causes a mild mitochondrial phenotype. METHODS: We used whole exome sequencing (WES) to identify a novel heterozygous variant in MFF in a patient with ptosis, fatigue and muscle weakness. Using patient derived fibroblasts, we performed assays to evaluate mitochondrial and peroxisome dynamics. RESULTS: We show that fibroblasts derived from this patient are defective in mitochondrial fission, despite normal recruitment of Drp1 to the mitochondria. CONCLUSIONS: The MFF c.937G>A, p.E313K variant leads to a mild mitochondrial phenotype and is associated with defective mitochondrial fission in patient-derived fibroblasts.


Subject(s)
Dynamins , Mitochondria , Dynamins/genetics , Mitochondria/genetics , Transcription Factors/genetics , Mutation
3.
J Clin Neuromuscul Dis ; 24(2): 80-84, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36409338

ABSTRACT

ABSTRACT: Docking protein 7 (DOK7) congenital myasthenic syndrome (CMS) is characterized by limb-girdle weakness and lack of fluctuating fatigability simulating many familial myopathies. Albuterol is the first line of therapy in view of consistent improvement. Two brothers with progressive predominant biceps weakness for 1-3 years responded to prednisone treatment for 40-50 years. Various studies including muscle biopsy and many laboratory studies were unsuccessful for the definite diagnosis. Gene study, 40 years after the initial evaluation, confirmed the diagnosis of DOK7 CMS. These are the first reported cases of DOK7 CMS associated with a sustained benefit from corticosteroids.


Subject(s)
Myasthenic Syndromes, Congenital , Humans , Male , Albuterol , Muscle Weakness , Mutation/genetics , Myasthenic Syndromes, Congenital/genetics , Steroids
4.
Brain ; 145(6): 2077-2091, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35640906

ABSTRACT

PRKN mutations are the most common recessive cause of Parkinson's disease and are a promising target for gene and cell replacement therapies. Identification of biallelic PRKN patients at the population scale, however, remains a challenge, as roughly half are copy number variants and many single nucleotide polymorphisms are of unclear significance. Additionally, the true prevalence and disease risk associated with heterozygous PRKN mutations is unclear, as a comprehensive assessment of PRKN mutations has not been performed at a population scale. To address these challenges, we evaluated PRKN mutations in two cohorts with near complete genotyping of both single nucleotide polymorphisms and copy number variants: the NIH-PD + AMP-PD cohort, the largest Parkinson's disease case-control cohort with whole genome sequencing data from 4094 participants, and the UK Biobank, the largest cohort study with whole exome sequencing and genotyping array data from 200 606 participants. Using the NIH-PD participants, who were genotyped using whole genome sequencing, genotyping array, and multi-plex ligation-dependent probe amplification, we validated genotyping array for the detection of copy number variants. Additionally, in the NIH-PD cohort, functional assays of patient fibroblasts resolved variants of unclear significance in biallelic carriers and suggested that cryptic loss of function variants in monoallelic carriers are not a substantial confounder for association studies. In the UK Biobank, we identified 2692 PRKN copy number variants from genotyping array data from nearly half a million participants (the largest collection to date). Deletions or duplications involving exon 2 accounted for roughly half of all copy number variants and the vast majority (88%) involved exons 2, 3, or 4. In the UK Biobank, we found a pathogenic PRKN mutation in 1.8% of participants and two mutations in ∼1/7800 participants. Those with one PRKN pathogenic variant were as likely as non-carriers to have Parkinson's disease [odds ratio = 0.91 (0.58-1.38), P-value 0.76] or a parent with Parkinson's disease [odds ratio = 1.12 (0.94-1.31), P-value = 0.19]. Similarly, those in the NIH-PD + AMP + PD cohort with one PRKN pathogenic variant were as likely as non-carriers to have Parkinson's disease [odds ratio = 1.29 (0.74-2.38), P-value = 0.43]. Together our results demonstrate that heterozygous pathogenic PRKN mutations are common in the population but do not increase the risk of Parkinson's disease.


Subject(s)
Parkinson Disease , Ubiquitin-Protein Ligases , Humans , Cohort Studies , Mutation/genetics , Parkinson Disease/epidemiology , Parkinson Disease/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
5.
J Neurol Neurosurg Psychiatry ; 92(11): 1186-1196, 2021 11.
Article in English | MEDLINE | ID: mdl-34103343

ABSTRACT

BACKGROUND: We used a multimodal approach including detailed phenotyping, whole exome sequencing (WES) and candidate gene filters to diagnose rare neurological diseases in individuals referred by tertiary neurology centres. METHODS: WES was performed on 66 individuals with neurogenetic diseases using candidate gene filters and stringent algorithms for assessing sequence variants. Pathogenic or likely pathogenic missense variants were interpreted using in silico prediction tools, family segregation analysis, previous publications of disease association and relevant biological assays. RESULTS: Molecular diagnosis was achieved in 39% (n=26) including 59% of childhood-onset cases and 27% of late-onset cases. Overall, 37% (10/27) of myopathy, 41% (9/22) of neuropathy, 22% (2/9) of MND and 63% (5/8) of complex phenotypes were given genetic diagnosis. Twenty-seven disease-associated variants were identified including ten novel variants in FBXO38, LAMA2, MFN2, MYH7, PNPLA6, SH3TC2 and SPTLC1. Single-nucleotide variants (n=10) affected conserved residues within functional domains and previously identified mutation hot-spots. Established pathogenic variants (n=16) presented with atypical features, such as optic neuropathy in adult polyglucosan body disease, facial dysmorphism and skeletal anomalies in cerebrotendinous xanthomatosis, steroid-responsive weakness in congenital myasthenia syndrome 10. Potentially treatable rare diseases were diagnosed, improving the quality of life in some patients. CONCLUSIONS: Integrating deep phenotyping, gene filter algorithms and biological assays increased diagnostic yield of exome sequencing, identified novel pathogenic variants and extended phenotypes of difficult to diagnose rare neurogenetic disorders in an outpatient clinic setting.


Subject(s)
Exome Sequencing , Genetic Diseases, Inborn/diagnosis , Mutation , Nervous System Diseases/diagnosis , Rare Diseases/diagnosis , Adolescent , Adult , Aged , Genetic Diseases, Inborn/genetics , Humans , Middle Aged , Molecular Diagnostic Techniques , Nervous System Diseases/genetics , Pedigree , Phenotype , Rare Diseases/genetics , Young Adult
6.
Mov Disord ; 36(10): 2346-2357, 2021 10.
Article in English | MEDLINE | ID: mdl-34076298

ABSTRACT

BACKGROUND: Cytoplasmic inclusions of α-synuclein (α-syn) in brainstem neurons are characteristic of idiopathic Parkinson's disease (PD). PD also entails α-syn buildup in sympathetic nerves. Among genetic forms of PD, the relative extents of sympathetic intraneuronal accumulation of α-syn have not been reported. OBJECTIVE: This cross-sectional observational study compared magnitudes of intraneuronal deposition of α-syn in common and rare genetic forms of PD. METHODS: α-Syn deposition was quantified by the α-syn-tyrosine hydroxylase colocalization index in C2 cervical skin biopsies from 65 subjects. These included 30 subjects with pathogenic mutations in SNCA (n = 3), PRKN [biallelic (n = 7) and monoallelic (n = 3)], LRRK2 (n = 7), GBA (n = 7), or PARK7/DJ1 [biallelic (n = 1) and monoallelic (n = 2)]. Twenty-five of the mutation carriers had PD and five did not. Data were also analyzed from 19 patients with idiopathic PD and 16 control participants. RESULTS: α-Syn deposition varied as a function of genotype (F = 16.7, P < 0.0001). It was above the control range in 100% of subjects with SNCA mutations, 100% with LRRK2 mutations, 95% with idiopathic PD, 83% with GBA mutations, and 0% with biallelic PRKN mutations. α-Syn deposition in the biallelic PRKN group was significantly higher than in the control group. In addition, patients with biallelic PRKN mutations had higher α-syn deposition than their unaffected siblings. CONCLUSIONS: Individuals with SNCA, DJ-1, LRRK2, or GBA mutations have substantial intraneuronal α-syn deposition in sympathetic noradrenergic nerves in skin biopsies, whereas those with biallelic PRKN mutations do not. Biallelic PRKN patients may have mildly increased α-syn deposition compared with control subjects. © 2021 International Parkinson and Movement Disorder Society.


Subject(s)
Parkinson Disease , Cross-Sectional Studies , Humans , Mutation/genetics , Nerve Fibers , Parkinson Disease/genetics , alpha-Synuclein/genetics
7.
Neuromuscul Disord ; 30(9): 742-749, 2020 09.
Article in English | MEDLINE | ID: mdl-32819793

ABSTRACT

Patients with bi-allelic loss-of-function mutations in the gene ANO5 most commonly present with muscular dystrophy. In some studies, patients with ANO5-related dystrophy (ANO5-RD) had evidence of mild cardiac abnormalities; however, cardiac magnetic resonance imaging (MRI) has not been used for myocardial characterization. Ten patients with genetically confirmed ANO5-RD were enrolled in a phenotyping study to better characterize cardiac involvement. Evaluations included medical history, neurological examination and cardiac evaluations (electrocardiogram, echocardiogram and cardiac MRI). All patients were clinically asymptomatic from a cardiac perspective. Muscle MRI was consistent with previous studies of ANO5-RD with increased T1 signal in the posterior and medial compartments of the upper leg and the posterior compartment of the lower leg. Cardiac studies using echocardiography and cardiac MRI revealed dilation of the aortic root and thickening of the aortic valve without significant stenosis in 3/10 patients. There was evidence of abnormal late gadolinium enhancement (LGE) on cardiac MRI in 2/10 patients. In ANO5-RD, the development of cardiac fibrosis, edema or inflammation as demonstrated by LGE has not yet been reported. Cardiac MRI can characterize cardiac tissue and may detect subtle changes before they appear on echocardiography, with potential prognostic implications.


Subject(s)
Contrast Media/pharmacology , Gadolinium/metabolism , Magnetic Resonance Imaging, Cine/methods , Magnetic Resonance Imaging , Anoctamins/genetics , Cardiomyopathies/classification , Cardiomyopathies/pathology , Electrocardiography , Female , Heart/physiopathology , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Myocardium/pathology
9.
Ann Neurol ; 87(4): 547-555, 2020 04.
Article in English | MEDLINE | ID: mdl-31957062

ABSTRACT

OBJECTIVE: To determine the clinical and molecular features in patients with amyotrophic lateral sclerosis 4 (ALS4) due to mutations in the senataxin (SETX) gene and to develop tools for evaluating SETX variants. METHODS: Our study involved 32 patients, including 31 with mutation in SETX at c.1166 T>C (p.Leu389Ser) and 1 with mutation at c.1153 G>A (p.Glu385Lys). Clinical characterization of the patients included neurological examination, blood tests, magnetic resonance imaging (MRI), and dual-energy x-ray absorptiometry (DEXA). Fibroblasts and motor neurons were obtained to model the disease and characterize the molecular alteration in senataxin function. RESULTS: We report key clinical features of ALS4. Laboratory analysis showed alteration of serum creatine kinase and creatinine in the Leu389Ser ALS4 cohort. MRI showed increased muscle fat fraction in the lower extremities, which correlates with disease duration (thigh fat fraction R2 = 0.35, p = 0.01; lower leg fat fraction R2 = 0.49, p < 0.01). DEXA measurements showed lower extremities are more affected than upper extremities (average fat z scores of 2.1 and 0.6, respectively). A cellular assay for SETX function confirmed that like the Leu389Ser mutation, the Glu385Lys variant leads to a decrease in R loops, likely from a gain of function. INTERPRETATION: We identified clinical laboratory and radiological features of ALS4, and hence they should be monitored for disease progression. The molecular characterization of R-loop levels in patient-derived cells provides insight into the disease pathology and assays to evaluate the pathogenicity of candidate mutations in the SETX gene. ANN NEUROL 2020;87:547-555.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , DNA Helicases/metabolism , Multifunctional Enzymes/metabolism , RNA Helicases/metabolism , Absorptiometry, Photon , Adipose Tissue/diagnostic imaging , Adult , Aged , Aged, 80 and over , Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/physiopathology , Blotting, Western , Creatine Kinase/metabolism , Creatinine/metabolism , DNA Helicases/genetics , Electromyography , Female , Fibroblasts , Humans , Induced Pluripotent Stem Cells , Infant , Lower Extremity/diagnostic imaging , Magnetic Resonance Imaging , Male , Middle Aged , Multifunctional Enzymes/genetics , Muscle, Skeletal/diagnostic imaging , Mutation , Neural Conduction , R-Loop Structures/genetics , RNA Helicases/genetics , RNA, Messenger , Upper Extremity/diagnostic imaging , Young Adult
10.
Neurology ; 93(21): e1932-e1943, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31653707

ABSTRACT

OBJECTIVE: To identify the rate of change of clinical outcome measures in children with 2 types of congenital muscular dystrophy (CMD), COL6-related dystrophies (COL6-RDs) and LAMA2-related dystrophies (LAMA2-RDs). METHODS: Over the course of 4 years, 47 individuals (23 with COL6-RD and 24 with LAMA2-RD) 4 to 22 years of age were evaluated. Assessments included the Motor Function Measure 32 (MFM32), myometry (knee flexors and extensors, elbow flexors and extensors), goniometry (knee and elbow extension), pulmonary function tests, and quality-of-life measures. Separate linear mixed-effects models were fitted for each outcome measurement, with subject-specific random intercepts. RESULTS: Total MFM32 scores for COL6-RDs and LAMA2-RDs decreased at a rate of 4.01 and 2.60 points, respectively, each year (p < 0.01). All muscle groups except elbow flexors for individuals with COL6-RDs decreased in strength between 1.70% (p < 0.05) and 2.55% (p < 0.01). Range-of-motion measurements decreased by 3.21° (p < 0.05) at the left elbow each year in individuals with LAMA2-RDs and 2.35° (p < 0.01) in right knee extension each year in individuals with COL6-RDs. Pulmonary function demonstrated a yearly decline in sitting forced vital capacity percent predicted of 3.03% (p < 0.01) in individuals with COL6-RDs. There was no significant change in quality-of-life measures analyzed. CONCLUSION: Results of this study describe the rate of change of motor function as measured by the MFM32, muscle strength, range of motion, and pulmonary function in individuals with COL6-RDs and LAMA2-RDs.


Subject(s)
Muscular Dystrophies/physiopathology , Sclerosis/physiopathology , Adolescent , Arthrometry, Articular , Child , Child, Preschool , Disease Progression , Enteral Nutrition , Female , Humans , Linear Models , Longitudinal Studies , Male , Mobility Limitation , Muscle Strength , Muscle Strength Dynamometer , Outcome Assessment, Health Care , Quality of Life , Respiratory Function Tests , Vital Capacity , Young Adult
12.
Ann Clin Transl Neurol ; 5(3): 369-375, 2018 03.
Article in English | MEDLINE | ID: mdl-29560381

ABSTRACT

Amyotrophic lateral sclerosis 8 (ALS8) is a rare progressive neurodegenerative disease resulting from mutation in the gene for vesicle-associated membrane protein-associated protein B. We evaluated a North American patient using exome sequencing, and identified a P56S mutation. The disease protein had similar subcellular localization and expression levels in the patient and control fibroblasts. Patient fibroblasts showed increased basal endoplasmic reticulum stress and dysfunction of nucleocytoplasmic transport as evidenced by impaired Ran trafficking. This finding extends the identification of ALS8 into North America, and indicates a cellular defect similar to other forms of hereditary motor neuron disease.

13.
Mol Cell ; 69(3): 426-437.e7, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29395064

ABSTRACT

R-loops are three-stranded nucleic acid structures found abundantly and yet often viewed as by-products of transcription. Studying cells from patients with a motor neuron disease (amyotrophic lateral sclerosis 4 [ALS4]) caused by a mutation in senataxin, we uncovered how R-loops promote transcription. In ALS4 patients, the senataxin mutation depletes R-loops with a consequent effect on gene expression. With fewer R-loops in ALS4 cells, the expression of BAMBI, a negative regulator of transforming growth factor ß (TGF-ß), is reduced; that then leads to the activation of the TGF-ß pathway. We uncovered that genome-wide R-loops influence promoter methylation of over 1,200 human genes. DNA methyl-transferase 1 favors binding to double-stranded DNA over R-loops. Thus, in forming R-loops, nascent RNA blocks DNA methylation and promotes further transcription. Hence, our results show that nucleic acid structures, in addition to sequences, influence the binding and activity of regulatory proteins.


Subject(s)
Gene Expression Regulation/genetics , Promoter Regions, Genetic , RNA Helicases/genetics , RNA Helicases/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , DNA/genetics , DNA/ultrastructure , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA Helicases , DNA Methylation/genetics , Humans , Membrane Proteins/metabolism , Multifunctional Enzymes , Mutation , Promoter Regions, Genetic/genetics , Protein Processing, Post-Translational , RNA/genetics , RNA/ultrastructure , RNA-Binding Motifs , Transcriptional Activation/genetics , Transforming Growth Factor beta/metabolism
14.
Muscle Nerve ; 57(1): 40-44, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28877556

ABSTRACT

INTRODUCTION: The effects of spinal bulbar muscular atrophy (SBMA) on quality of life (QoL) are not well understood. This study describes symptoms from the patient's perspective and the impact these symptoms have on QoL. METHODS: We conducted open-ended interviews with 21 adult men with genetically confirmed SBMA. Using a qualitative framework technique, we coded and analyzed interviews to identify symptoms and resulting themes. RESULTS: From these interviews, 729 quotations were extracted. We identified 200 SBMA-specific symptoms and 20 symptomatic themes. Weakness was mentioned by all interviewees. Symptoms within the domain of mental health and the specific themes of emotional issues and psychological impact were also frequently mentioned. DISCUSSION: Numerous symptoms affect QoL for patients with SBMA. We identified previously unrecognized symptoms that are important to address in enhancing clinical care for patients with SBMA and in developing tools to evaluate efficacy in future clinical trials. Muscle Nerve 57: 40-44, 2018.


Subject(s)
Muscular Disorders, Atrophic/psychology , Adult , Aged , Attitude , Emotions , Female , Humans , Interview, Psychological , Male , Mental Health , Middle Aged , Muscle Weakness/etiology , Muscle Weakness/physiopathology , Muscle Weakness/psychology , Muscular Disorders, Atrophic/physiopathology , Quality of Life
15.
Muscle Nerve ; 57(5): 749-755, 2018 05.
Article in English | MEDLINE | ID: mdl-28981955

ABSTRACT

INTRODUCTION: This study analyzes and describes atypical presentations of Charcot-Marie-Tooth disease type 4C (CMT4C). METHODS: We present clinical and physiologic features of 5 patients with CMT4C caused by biallelic private mutations of SH3TC2. RESULTS: All patients manifested scoliosis, and nerve conduction study indicated results in the demyelinating range. All patients exhibited signs of motor impairment within the first years of life. We describe 2 or more different genetic diseases in the same patient, atypical presentations of CMT, and 3 new mutations in CMT4C patients. DISCUSSION: A new era of unbiased genetic testing has led to this small case series of individuals with CMT4C and highlights the recognition of different genetic diseases in CMT4C patients for accurate diagnosis, genetic risk identification, and therapeutic intervention. The phenotype of CMT4C, in addition, appears to be enriched by a number of features unusual for the broad CMT category. Muscle Nerve 57: 749-755, 2018.


Subject(s)
Charcot-Marie-Tooth Disease , Mutation/genetics , Proteins/genetics , Adolescent , Adult , Animals , Animals, Newborn , Charcot-Marie-Tooth Disease/complications , Charcot-Marie-Tooth Disease/diagnosis , Charcot-Marie-Tooth Disease/genetics , Child , Demyelinating Diseases/etiology , Female , Genetic Testing , Humans , Intracellular Signaling Peptides and Proteins , Male , Rats , Rats, Sprague-Dawley , Sciatic Nerve/metabolism , Scoliosis/etiology
16.
Ann Clin Transl Neurol ; 4(11): 821-824, 2017 11.
Article in English | MEDLINE | ID: mdl-29159194

ABSTRACT

Autosomal recessive KIF1A missense mutations cause hereditary spastic paraplegia (HSP) type SPG30, while recessive truncations lead to sensory and autonomic neuropathy (HSN2C) and many de novo missense mutations are associated with cognitive impairment. Here, we describe family members across three generations with pure HSP. A heterozygous p.Ser69Leu KIF1A mutation segregates with those afflicted. The same variant was previously reported in a Finnish father and son with pure HSP as well as four members of a Sicilian kindred with more intrafamilial phenotypic variability. This further validates the pathogenicity of the p.Ser69Leu mutation and suggests that it may represent a mutation hot spot.

17.
Case Rep Neurol ; 9(2): 216-221, 2017.
Article in English | MEDLINE | ID: mdl-28966590

ABSTRACT

BACKGROUND: Tubulin mutations are a cause of neuronal migrational disorders referred to as tubulinopathies. Mutations in tubulin genes can have a severe impact on microtubule function and result in heterogeneous clinical presentations. Current understanding of the clinical spectrum of tubulinopathies is predominantly based on research in fetal tissue and early-childhood cases. METHODS: Testing of candidate genes followed by whole-exome sequencing was performed in an adult woman with a neurodevelopmental, hyperkinetic movement disorder, to identify the underlying genetic cause. Bioinformatic modeling and a systematic review of literature was conducted to investigate genotype-phenotype correlations. RESULTS: The patient was found to carry a heterozygous, de novo c.722G>A, p.R241H mutation in a conserved domain of TUBB2B, encoding the ß-isoform of tubulin. In silico analysis indicated that this mutation was pathogenic. On neuroimaging, the patient had asymmetric pachygyria and dysmorphic basal ganglia. Her neurological examination demonstrated mild cognitive impairment, myoclonus-dystonia, and skeletal anomalies. CONCLUSIONS: Here, we report the unique phenotype of an adult TUBB2B mutation carrier. This case illustrates a relatively mild phenotype compared to previously described fetal and early childhood cases. This highlights the importance of obtaining molecular genetic testing in individuals with a high probability of a genetic disease, including undiagnosed adult patients.

18.
Ann Clin Transl Neurol ; 4(5): 347-350, 2017 05.
Article in English | MEDLINE | ID: mdl-28491902

ABSTRACT

Alterations in proteins that regulate endoplasmic reticulum morphology are common causes of hereditary spastic paraplegia (SPG1-78, plus others). Mutations in the REEP1 gene that encodes an endoplasmic reticulum-shaping protein are well-known causes of SPG31, a common autosomal dominant spastic paraplegia. A closely-related gene, REEP2, is mutated in SPG72, with both autosomal and recessive inheritances. Here, we report a patient with a pure hereditary spastic paraplegia due to a de novo missense mutation (c.119T > G, p.Met40Arg) in REEP2 at a highly-conserved residue very close to another known pathogenic missense change. This represents only the second autosomal dominant SPG72 missense mutation reported.

19.
20.
Ann Clin Transl Neurol ; 4(4): 272-275, 2017 04.
Article in English | MEDLINE | ID: mdl-28382308

ABSTRACT

Hereditary spastic paraplegias (HSPs) are well-characterized disorders but rarely reported in Africa. We evaluated a Malian family in which three individuals had HSP and distal muscle atrophy and sensory loss. HSP panel testing identified a novel heterozygous missense mutation in KIF5A (c.1086G>C, p.Lys362Asn) that segregated with the disease (SPG10). Lys362 is highly conserved across species and Lys362Asn is predicted to be damaging. This study shows that HSPs are present in sub-Saharan Africa, although likely underdiagnosed. Increasing efficiency and decreasing costs of DNA sequencing will make it more feasible to diagnose HSPs in developing countries.

SELECTION OF CITATIONS
SEARCH DETAIL
...