Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Pharm ; 19(10): 3576-3585, 2022 10 03.
Article in English | MEDLINE | ID: mdl-35434995

ABSTRACT

Designed ankyrin repeat proteins (DARPins) are genetically engineered proteins that exhibit high specificity and affinity toward specific targets. Here, the G3-DARPin, which binds the HER2/neu receptor, was site-specifically modified with enzymatic methods and 89Zr-radiolabeled for applications in positron emission tomography (PET). Sortase A transpeptidation was used to install a desferrioxamine B (DFO) chelate bearing a reactive triglycine group to the C-terminal sortase tag of the G3-DARPin, and 89Zr-radiolabeling produced a novel 89ZrDFO-G3-DARPin radiotracer that can detect HER2/neu-positive tumors. The triglycine probe, DFO-Gly3 (1), was synthesized in 29% overall yield. After sortase A transpeptidation and purification from the nonfunctionalized protein component, the DFO-G3-DARPin product was radiolabeled to give 89ZrDFO-G3-DARPin. Binding specificity was assessed in HER2/neu-expressing BT-474 and SK-OV-3 cellular assays. The pharmacokinetics, tumor uptake, and specificity of 89ZrDFO-G3-DARPin were measured in vivo by PET imaging and confirmed by final time point (24 h) biodistribution experiments in female athymic nude mice bearing BT-474 xenografts. Sortase A transpeptidation afforded the site-specific and stoichiometrically precise functionalization of DFO-G3-DARPin with one chelate per protein. The modified DFO-G3-DARPin was purified from the nonfunctionalized DARPin by using Ni-NTA affinity chromatography. 89ZrDFO-G3-DARPin was obtained with a radiochemical purity of >95% measured by radio-size-exclusion chromatography. BT-474 tumor uptake at 24 h postadministration reached 4.41 ± 0.67 %ID/g (n = 3) with an approximate ∼70% reduction in tumor-associated activity in the blocking group (1.26 ± 0.29 %ID/g; 24 h postadministration, n = 5, P-value of <0.001). Overall, the site-specific, enzyme-mediated functionalization and characterization of 89ZrDFO-G3-DARPin in HER2/neu positive BT-474 xenografts demonstrate that DARPins are an attractive platform for generating a new class of protein-based radiotracers for PET. The specific uptake and retention of 89ZrDFO-G3-DARPin in tumors and clearance from most background tissues produced PET images with high tumor-to-background contrast.


Subject(s)
Designed Ankyrin Repeat Proteins , Receptor, ErbB-2 , Animals , Cell Line, Tumor , Deferoxamine/chemistry , Female , Humans , Mice , Mice, Nude , Positron-Emission Tomography/methods , Receptor, ErbB-2/metabolism , Tissue Distribution , Zirconium/chemistry
2.
Nat Commun ; 11(1): 1157, 2020 03 02.
Article in English | MEDLINE | ID: mdl-32123177

ABSTRACT

Dynamic reprogramming of gene regulatory networks (GRNs) enables organisms to rapidly respond to environmental perturbation. However, the underlying transient interactions between transcription factors (TFs) and genome-wide targets typically elude biochemical detection. Here, we capture both stable and transient TF-target interactions genome-wide within minutes after controlled TF nuclear import using time-series chromatin immunoprecipitation (ChIP-seq) and/or DNA adenine methyltransferase identification (DamID-seq). The transient TF-target interactions captured uncover the early mode-of-action of NIN-LIKE PROTEIN 7 (NLP7), a master regulator of the nitrogen signaling pathway in plants. These transient NLP7 targets captured in root cells using temporal TF perturbation account for 50% of NLP7-regulated genes not detectably bound by NLP7 in planta. Rapid and transient NLP7 binding activates early nitrogen response TFs, which we validate to amplify the NLP7-initiated transcriptional cascade. Our approaches to capture transient TF-target interactions genome-wide can be applied to validate dynamic GRN models for any pathway or organism of interest.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Nitrogen/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Active Transport, Cell Nucleus/genetics , Arabidopsis/physiology , Binding Sites , Genome, Plant , Plant Roots/genetics , Plant Roots/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL