Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
mSphere ; : e0044421, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34190588

ABSTRACT

Egress from host cells is an essential step in the lytic cycle of T. gondii and other apicomplexan parasites; however, only a few parasite secretory proteins are known to affect this process. The putative metalloproteinase toxolysin 4 (TLN4) was previously shown to be an extensively processed microneme protein, but further characterization was impeded by the inability to genetically ablate TLN4. Here, we show that TLN4 has the structural properties of an M16 family metalloproteinase, that it possesses proteolytic activity on a model substrate, and that genetic disruption of TLN4 reduces the efficiency of egress from host cells. Complementation of the knockout strain with the TLN4 coding sequence significantly restored egress competency, affirming that the phenotype of the Δtln4 parasite was due to the absence of TLN4. This work identifies TLN4 as the first metalloproteinase and the second microneme protein to function in T. gondii egress. The study also lays a foundation for future mechanistic studies defining the precise role of TLN4 in parasite exit from host cells. IMPORTANCE After replicating within infected host cells, the single-celled parasite Toxoplasma gondii must rupture out of such cells in a process termed egress. Although it is known that T. gondii egress is an active event that involves disruption of host-derived membranes surrounding the parasite, very few proteins that are released by the parasite are known to facilitate egress. In this study, we identify a parasite secretory protease that is necessary for efficient and timely egress, laying the foundation for understanding precisely how this protease facilitates T. gondii exit from host cells.

2.
Mol Cancer ; 13: 120, 2014 May 23.
Article in English | MEDLINE | ID: mdl-24885513

ABSTRACT

BACKGROUND: Insertional mutagenesis screens have been used with great success to identify oncogenes and tumor suppressor genes. Typically, these screens use gammaretroviruses (γRV) or transposons as insertional mutagens. However, insertional mutations from replication-competent γRVs or transposons that occur later during oncogenesis can produce passenger mutations that do not drive cancer progression. Here, we utilized a replication-incompetent lentiviral vector (LV) to perform an insertional mutagenesis screen to identify genes in the progression to androgen-independent prostate cancer (AIPC). METHODS: Prostate cancer cells were mutagenized with a LV to enrich for clones with a selective advantage in an androgen-deficient environment provided by a dysregulated gene(s) near the vector integration site. We performed our screen using an in vitro AIPC model and also an in vivo xenotransplant model for AIPC. Our approach identified proviral integration sites utilizing a shuttle vector that allows for rapid rescue of plasmids in E. coli that contain LV long terminal repeat (LTR)-chromosome junctions. This shuttle vector approach does not require PCR amplification and has several advantages over PCR-based techniques. RESULTS: Proviral integrations were enriched near prostate cancer susceptibility loci in cells grown in androgen-deficient medium (p < 0.001), and five candidate genes that influence AIPC were identified; ATPAF1, GCOM1, MEX3D, PTRF, and TRPM4. Additionally, we showed that RNAi knockdown of ATPAF1 significantly reduces growth (p < 0.05) in androgen-deficient conditions. CONCLUSIONS: Our approach has proven effective for use in PCa, identifying a known prostate cancer gene, PTRF, and also several genes not previously associated with prostate cancer. The replication-incompetent shuttle vector approach has broad potential applications for cancer gene discovery, and for interrogating diverse biological and disease processes.


Subject(s)
Gene Expression Regulation, Neoplastic , Lentivirus/genetics , Mutagenesis, Insertional/methods , Prostate/metabolism , Prostatic Neoplasms/genetics , Receptors, Androgen/genetics , Animals , Cell Line, Tumor , Cell Proliferation , Clone Cells , Escherichia coli/genetics , Escherichia coli/metabolism , Genetic Loci , Genetic Vectors , High-Throughput Screening Assays , Humans , Lentivirus/metabolism , Male , Mice , Mitochondrial Proton-Translocating ATPases/antagonists & inhibitors , Mitochondrial Proton-Translocating ATPases/genetics , Mitochondrial Proton-Translocating ATPases/metabolism , Molecular Chaperones/antagonists & inhibitors , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Prostate/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Receptors, Androgen/deficiency , Signal Transduction , Terminal Repeat Sequences , Virus Replication , Xenograft Model Antitumor Assays
3.
Biol Reprod ; 87(6): 131, 2012 Jun.
Article in English | MEDLINE | ID: mdl-23034159

ABSTRACT

Male sex determination is initiated through the testis-determining factor SRY that promotes Sertoli cell differentiation and subsequent gonadal development. The basic helix-loop-helix (bHLH) gene Tcf21 was identified as one of the direct downstream targets of SRY. The current study was designed to identify the downstream targets of TCF21 and the potential cascade of bHLH genes that promote Sertoli cell differentiation. A modified ChIP-Chip comparative hybridization analysis identified 121 direct downstream binding targets for TCF21. The gene networks and cellular pathways potentially regulated by these TCF21 targets were identified. One of the main bHLH targets for TCF21 was the bHLH gene scleraxis (Scx). An embryonic ovarian gonadal cell culture was used to examine the functional role of Sry, Tcf21, and Scx to promote an in vitro sex reversal and induction of Sertoli cell differentiation. SRY and TCF21 were found to induce the initial stages of Sertoli cell differentiation, whereas SCX was found to induce the later stages of Sertoli cell differentiation associated with pubertal development using transferrin gene expression as a marker. Therefore, a cascade of SRY followed by TCF21 followed by SCX appears to promote, in part, Sertoli cell fate determination and subsequent differentiation. The current observations help elucidate the initial molecular events involved in the induction of Sertoli cell differentiation and testis development.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Differentiation , Sertoli Cells/cytology , Sex Differentiation , Sex-Determining Region Y Protein/metabolism , Signal Transduction , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Cells, Cultured , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Female , Gene Expression Regulation, Developmental , Male , Models, Biological , Ovary/cytology , Ovary/metabolism , Pregnancy , Rats , Rats, Sprague-Dawley , Recombinant Proteins/metabolism , Sertoli Cells/metabolism , Sex-Determining Region Y Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...