Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Res ; 1155: 179-95, 2007 Jun 25.
Article in English | MEDLINE | ID: mdl-17493596

ABSTRACT

The clinical usefulness of aminoglycoside antibiotics is limited by their ototoxicity. In rodents, damage to the inner ear is often associated with rotational behavior and locomotor hyperactivity reminiscent of such behaviors resulting from an imbalance of forebrain dopamine systems. Based on previous observations in the circling (ci2/ci2) Lewis (LEW) rat mutant, a spontaneous mutation leading to hair cell loss, deafness, impairment of vestibular functions, lateralized circling, hyperactivity and alterations in the nigrostriatal dopamine system, we have recently hypothesized that vestibular defects during postnatal development, independent of whether induced or inherited, lead to secondary changes in the dopaminergic system within the basal ganglia, which would be a likely explanation for the typical behavioral phenotype seen in such models. In the present study, we directly compared the phenotype induced by streptomycin in LEW rats with that of the ci2 LEW rat mutant. For this purpose, we treated neonatal LEW rats over 3 weeks by streptomycin, which induced bilateral degeneration of cochlear and vestibular hair cells. Following this treatment period, the behavioral syndrome of the streptomycin-treated animals, including the lateralized rotational behavior, was almost indistinguishable from that of ci2 mutant rats. However, in contrast to the ci2 mutant rat, all alterations, except the hearing loss, were only transient, disappearing between 7 and 24 weeks following treatment. In conclusion, in line with our hypothesis, vestibular defects induced in normal LEW rats led to the same phenotypic behavior as the inherited vestibular defect of ci2 mutant rats. However, with increasing time for recovery, adaptation to the vestibular impairment developed in streptomycin-treated rats, while all deficits persisted in the mutant animals. At least in part, the transient nature of the abnormal behaviors resulting from treatment with streptomycin could be explained by adaptation to the vestibular impairment by the use of visual cues, which is not possible in ci2 rats because of progressive retinal degeneration in these mutants. Although further experiments are needed to prove this hypothesis, the present study shows that direct comparisons between these two models serve to understand the mechanisms underlying the complex behavioral phenotype in rodents with vestibular defects and how these defects are compensated.


Subject(s)
Auditory Perception , Behavior, Animal , Hearing Disorders/genetics , Motor Activity/physiology , Vestibule, Labyrinth/physiopathology , Alopecia/genetics , Animals , Deafness/genetics , Hearing Disorders/physiopathology , Phenotype , Rats , Rats, Inbred Lew , Rats, Mutant Strains
2.
Behav Brain Res ; 180(2): 218-25, 2007 Jun 18.
Article in English | MEDLINE | ID: mdl-17442411

ABSTRACT

We have recently described two rat mutants, ci2 and ci3, in which abnormal lateralized rotational behavior and locomotor hyperactivity occur either spontaneously or in response to external stimuli, such as new environment. While cochlear and vestibular defects are found in ci2 rats, ci3 rats do not exhibit any inner ear abnormalities. Both mutants show abnormal lateralities in striatal dopamine and in the density of dopaminergic neurons in substantia nigra or ventral tegmental area, which may be involved in the behavioral phenotype of these rats. In line with this hypothesis, the circling behavior of the ci2 and ci3 mutants is intensified by amphetamine. In the present study, we evaluated the effects of dopamine receptor blockade on the abnormal behaviors of ci2 and ci3 rats. Haloperidol blocked the hyperactivity in both mutants, but this was most likely due to the known inhibitory effect on locomotion by this drug. When animals were observed during the light phase, the abnormal rotational behavior of the mutants was not significantly affected by haloperidol, whereas the dopamine D2 receptor-preferring antagonist raclopride significantly reduced rotations in ci2 rats. When the behavior of the ci3 rats was video-monitored during the dark phase, circling was significantly inhibited by haloperidol. The most striking difference between the two mutants was that ci2 rats were less susceptible than the unaffected littermates to the cataleptogenic effects of haloperidol and raclopride, whereas no such difference was observed in ci3 rats. These data demonstrate that, although there are several similarities between the ci2 and ci3 rat mutants, their cataleptogenic response to dopamine receptor blockade strikingly differs. The comparative evaluation of these two rat mutants may help to increase our understanding of the relationship between developmental anomalies of cerebral asymmetry and brain disorders.


Subject(s)
Behavior, Animal/drug effects , Dopamine Antagonists/pharmacology , Locomotion/drug effects , Movement Disorders/genetics , Movement Disorders/physiopathology , Stereotyped Behavior , Analysis of Variance , Animals , Behavior, Animal/physiology , Dizocilpine Maleate/pharmacology , Dose-Response Relationship, Drug , Excitatory Amino Acid Antagonists/pharmacology , Hyperkinesis/chemically induced , Locomotion/genetics , Rats , Rats, Inbred Strains , Rats, Mutant Strains , Rotation , Time Factors
3.
Brain Res ; 1083(1): 50-60, 2006 Apr 14.
Article in English | MEDLINE | ID: mdl-16545783

ABSTRACT

A large body of experimental evidence suggests that the basal ganglia circuitry may be part of a remote control system modulating the spread of epileptic seizures. In the kindling model of temporal lobe epilepsy, this endogenous inhibitory control mechanism seems to be impaired. Neurochemical and neurophysiological studies have indicated that the activity of the GABAergic projection from the striatum to the substantia nigra pars reticulata is reduced in kindled rats, but the exact mechanisms involved in this observation are not known. Possible explanations include a kindling-induced loss of striatal GABAergic projection neurons to the substantia nigra or enhanced inhibition of these neurons by GABAergic interneurons. In the present experiments, the GABAergic system of the striatum (caudate-putamen) of amygdala-kindled rats and controls was studied immunohistochemically with a monoclonal antibody to GABA and with nonisotopic in situ hybridization with cRNA probes selective for glutamic acid decarboxylase 65 (GAD65) and GAD67, respectively. Compared to sham controls, an increased density of neurons heavily labeled for GAD67 mRNA was observed in the anterior striatum of kindled rats when cells were counted 6 weeks after the last kindled seizure. This subgroup of striatal GABAergic neurons has been suggested previously to correspond to the medium-sized aspiny interneurons in the striatum, indicating that kindling is associated with an increased activity of these neurons. Our previous finding of reduced GAD and GABA levels in synaptosomes isolated from the substantia nigra of kindled rats together with the present observation of increased density of GABAergic striatal interneurons in such rats suggest that kindling affects the regulation of the GABAergic projections from the striatum to the substantia nigra rather than directly damaging GABAergic neurons in the striatum.


Subject(s)
Amygdala/metabolism , Corpus Striatum/metabolism , Neural Pathways/metabolism , Neurons/metabolism , Substantia Nigra/metabolism , gamma-Aminobutyric Acid/metabolism , Amygdala/physiopathology , Animals , Corpus Striatum/physiopathology , Disease Models, Animal , Epilepsy, Temporal Lobe/genetics , Epilepsy, Temporal Lobe/metabolism , Epilepsy, Temporal Lobe/physiopathology , Female , Glutamate Decarboxylase/genetics , Glutamate Decarboxylase/metabolism , Immunohistochemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Kindling, Neurologic , Neural Inhibition/genetics , Neural Pathways/physiopathology , RNA, Messenger/metabolism , Rats , Rats, Wistar , Substantia Nigra/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...