Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
mBio ; 15(3): e0338823, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38353545

ABSTRACT

Urinary tract infections (UTIs) are one of the most common bacterial infections in humans, with ~400 million cases across the globe each year. Uropathogenic Escherichia coli (UPEC) is the major cause of UTI and increasingly associated with antibiotic resistance. This scenario has been worsened by the emergence and spread of pandemic UPEC sequence type 131 (ST131), a multidrug-resistant clone associated with extraordinarily high rates of infection. Here, we employed transposon-directed insertion site sequencing in combination with metabolomic profiling to identify genes and biochemical pathways required for growth and survival of the UPEC ST131 reference strain EC958 in human urine (HU). We identified 24 genes required for growth in HU, which mapped to diverse pathways involving small peptide, amino acid and nucleotide metabolism, the stringent response pathway, and lipopolysaccharide biosynthesis. We also discovered a role for UPEC resistance to fluoride during growth in HU, most likely associated with fluoridation of drinking water. Complementary nuclear magnetic resonance (NMR)-based metabolomics identified changes in a range of HU metabolites following UPEC growth, the most pronounced being L-lactate, which was utilized as a carbon source via the L-lactate dehydrogenase LldD. Using a mouse UTI model with mixed competitive infection experiments, we demonstrated a role for nucleotide metabolism and the stringent response in UPEC colonization of the mouse bladder. Together, our application of two omics technologies combined with different infection-relevant settings has uncovered new factors required for UPEC growth in HU, thus enhancing our understanding of this pivotal step in the UPEC infection pathway. IMPORTANCE: Uropathogenic Escherichia coli (UPEC) cause ~80% of all urinary tract infections (UTIs), with increasing rates of antibiotic resistance presenting an urgent threat to effective treatment. To cause infection, UPEC must grow efficiently in human urine (HU), necessitating a need to understand mechanisms that promote its adaptation and survival in this nutrient-limited environment. Here, we used a combination of functional genomic and metabolomic techniques and identified roles for the metabolism of small peptides, amino acids, nucleotides, and L-lactate, as well as the stringent response pathway, lipopolysaccharide biosynthesis, and fluoride resistance, for UPEC growth in HU. We further demonstrated that pathways involving nucleotide metabolism and the stringent response are required for UPEC colonization of the mouse bladder. The UPEC genes and metabolic pathways identified in this study represent targets for the development of innovative therapeutics to prevent UPEC growth during human UTI, an urgent need given the rapidly rising rates of global antibiotic resistance.


Subject(s)
Escherichia coli Infections , Urinary Tract Infections , Uropathogenic Escherichia coli , Humans , Escherichia coli/genetics , Fluorides/metabolism , Lipopolysaccharides/metabolism , Urinary Tract Infections/microbiology , Escherichia coli Infections/microbiology , Genomics , Nucleotides/metabolism , Lactates/metabolism , Uropathogenic Escherichia coli/genetics
2.
Crit Care Explor ; 6(1): e1030, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38239409

ABSTRACT

OBJECTIVES: We sought to assess whether genetic associations with metabolite concentrations in septic shock patients could be used to identify pathways of potential importance for understanding sepsis pathophysiology. DESIGN: Retrospective multicenter cohort studies of septic shock patients. SETTING: All participants who were admitted to 27 participating hospital sites in three countries (Australia, New Zealand, and the United Kingdom) were eligible for inclusion. PATIENTS: Adult, critically ill, mechanically ventilated patients with septic shock (n = 230) who were a subset of the Adjunctive Corticosteroid Treatment in Critically Ill Patients with Septic Shock trial (ClinicalTrials.gov number: NCT01448109). INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: A genome-wide association study was conducted for a range of serum metabolite levels for participants. Genome-wide significant associations (p ≤ 5 × 10-8) were found for the two major ketone bodies (3-hydroxybutyrate [rs2456680] and acetoacetate [rs2213037] and creatinine (rs6851961). One of these single-nucleotide polymorphisms (SNPs) (rs2213037) was located in the alcohol dehydrogenase cluster of genes, which code for enzymes related to the metabolism of acetoacetate and, therefore, presents a plausible association for this metabolite. None of the three SNPs showed strong associations with risk of sepsis, 28- or 90-day mortality, or Acute Physiology and Chronic Health Evaluation score (a measure of sepsis severity). CONCLUSIONS: We suggest that the genetic associations with metabolites may reflect a starvation response rather than processes involved in sepsis pathophysiology. However, our results require further investigation and replication in both healthy and diseased cohorts including those of different ancestry.

3.
Front Nutr ; 9: 1006393, 2022.
Article in English | MEDLINE | ID: mdl-36313068

ABSTRACT

The green plum is a native fruit of Australia that grows on the tree Buchanania obovata. This study aimed to confirm the high level of folate in green plums by analyzing a large number of ripe samples from multiple locations and to understand how folate vitamers change as the fruit grows through maturity stages. This study analyzed green plums for five vitamers of folate, H4folate, 5-CH3-H4folate, 5-CHO-H4folate, 10-CHO-PteGlu, and PteGlu (folic acid) using a stable isotope dilution assay on a liquid chromatograph mass spectrometer (LC-MS). Green plums were tested from four locations, two harvests and five maturity stages. Another 11 ripe samples, each from different tree clumps from one location, were also tested as were ripe red-colored green plums. The results show the 5-CH3-H4folate in green plum increases and accumulates in the fruit through development, ripening and senescence. The ripe green plums contain between 82.4 ± 5.5 and 149.4 ± 10.7 µg/100 g Fresh Weight (FW). The red-colored green plums are even higher in folate, with total folate measured as 192.5 ± 7.0 and 293.7 ± 27.4 µg/100 g FW, and further analysis of them is suggested. There is some variation in amounts of folate between fruit from different locations and sets of trees, but all ripe green plums tested are considered good dietary sources of folate.

4.
PLoS Pathog ; 18(1): e1010209, 2022 01.
Article in English | MEDLINE | ID: mdl-35085362

ABSTRACT

Haemophilus influenzae (Hi) infections are associated with recurring acute exacerbations of chronic respiratory diseases in children and adults including otitis media, pneumonia, chronic obstructive pulmonary disease and asthma. Here, we show that persistence and recurrence of Hi infections are closely linked to Hi metabolic properties, where preferred growth substrates are aligned to the metabolome of human airway epithelial surfaces and include lactate, pentoses, and nucleosides, but not glucose that is typically used for studies of Hi growth in vitro. Enzymatic and physiological investigations revealed that utilization of lactate, the preferred Hi carbon source, required the LldD L-lactate dehydrogenase (conservation: 98.8% of strains), but not the two redox-balancing D-lactate dehydrogenases Dld and LdhA. Utilization of preferred substrates was directly linked to Hi infection and persistence. When unable to utilize L-lactate or forced to rely on salvaged guanine, Hi showed reduced extra- and intra-cellular persistence in a murine model of lung infection and in primary normal human nasal epithelia, with up to 3000-fold attenuation observed in competitive infections. In contrast, D-lactate dehydrogenase mutants only showed a very slight reduction compared to the wild-type strain. Interestingly, acetate, the major Hi metabolic end-product, had anti-inflammatory effects on cultured human tissue cells in the presence of live but not heat-killed Hi, suggesting that metabolic endproducts also influence HI-host interactions. Our work provides significant new insights into the critical role of metabolism for Hi persistence in contact with host cells and reveals for the first time the immunomodulatory potential of Hi metabolites.


Subject(s)
Haemophilus Infections/metabolism , Haemophilus influenzae/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Respiratory Mucosa/metabolism , Respiratory Mucosa/microbiology , Animals , Host-Pathogen Interactions/physiology , Humans , Mice
5.
Nanomaterials (Basel) ; 11(7)2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34361131

ABSTRACT

The ability to predict the behaviour of polymeric nanomedicines can often be obfuscated by subtle modifications to the corona structure, such as incorporation of fluorophores or other entities. However, these interactions provide an intriguing insight into how selection of molecular components in multifunctional nanomedicines contributes to the overall biological fate of such materials. Here, we detail the internalisation behaviours of polymeric nanomedicines across a suite of cell types and extrapolate data for distinguishing the underlying mechanics of cyanine-5-driven interactions as they pertain to uptake and endosomal escape. By correlating the variance of rate kinetics with endosomal escape efficiency and endogenous lipid polarity, we identify that observed cell-type dependencies correspond with an underlying susceptibility to dye-mediated effects and nanomedicine accumulation within polar vesicles. Further, our results infer that the ability to translocate endosomal membranes may be improved in certain cell types, suggesting a potential role for diagnostic moieties in trafficking of drug-loaded nanocarriers.

6.
Front Nutr ; 8: 738627, 2021.
Article in English | MEDLINE | ID: mdl-35096922

ABSTRACT

Australia is a rich source of biodiverse native plants that are mostly unstudied by western food science despite many of them being ethnofoods of Australian Indigenous people. Finding and understanding the relevant policy and legal requirements to scientifically assess these plants in a responsible way is a major challenge for food scientists. This work aims to give an overview of what the legal and policy framework is in relation to food chemistry on Australian native plant foods, to clarify the relationships between the guidelines, laws, policies and ethics and to discuss some of the challenges they present in food chemistry. This work provides the framework of Indigenous rights, international treaties, federal and state laws and ethical guidelines including key legislation and guidelines. It discusses the specific areas that are applicable to food chemistry: the collection of plant foods, the analysis of the samples and working with Indigenous communities. This brief perspective presents a framework that can be utilized by food chemists when developing responsible research involving plant foods native to northern Australia and can help them understand some of the complexity of working in this research area.

7.
ACS Infect Dis ; 6(3): 406-421, 2020 03 13.
Article in English | MEDLINE | ID: mdl-31933358

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is characterized by abnormal inflammatory responses and impaired airway immunity, which provides an opportunistic platform for nontypeable Haemophilus influenzae (NTHi) infection. Clinical evidence supports that the COPD airways present increased concentrations of glucose, which may facilitate proliferation of pathogenic bacteria able to use glucose as a carbon source. NTHi metabolizes glucose through respiration-assisted fermentation, leading to the excretion of acetate, formate, and succinate. We hypothesized that such specialized glucose catabolism may be a pathoadaptive trait playing a pivotal role in the NTHi airway infection. To find out whether this is true, we engineered and characterized bacterial mutant strains impaired to produce acetate, formate, or succinate by inactivating the ackA, pflA, and frdA genes, respectively. While the inactivation of the pflA and frdA genes only had minimal physiological effects, the inactivation of the ackA gene affected acetate production and led to reduced bacterial growth, production of lactate under low oxygen tension, and bacterial attenuation in vivo. Moreover, bacterially produced acetate was able to stimulate the expression of inflammatory genes by cultured airway epithelial cells. These results back the notion that the COPD lung supports NTHi growth on glucose, enabling production of fermentative end products acting as immunometabolites at the site of infection. Thus, glucose catabolism may contribute not only to NTHi growth but also to bacterially driven airway inflammation. This information has important implications for developing nonantibiotic antimicrobials, given that airway glucose homeostasis modifying drugs could help prevent microbial infections associated with chronic lung disease.


Subject(s)
Acetates/metabolism , Glucose/metabolism , Haemophilus influenzae/metabolism , Host-Pathogen Interactions , A549 Cells , Anti-Bacterial Agents , Gene Silencing , Genes, Bacterial , Humans , Inflammation/microbiology , Lung/microbiology , Metabolic Networks and Pathways , Metabolism , Mutation
8.
Methods Mol Biol ; 2104: 361-386, 2020.
Article in English | MEDLINE | ID: mdl-31953826

ABSTRACT

Interpretation of metabolomics data in the context of biological pathways is important to gain knowledge about underlying metabolic processes. In this chapter we present methods to analyze genome-scale models (GSMs) and metabolomics data together. This includes reading and mining of GSMs using the SBTab format to retrieve information on genes, reactions, and metabolites. Furthermore, the chapter showcases the generation of metabolic pathway maps using the Escher tool, which can be used for data visualization. Lastly, approaches to constrain flux balance analysis (FBA) by metabolomics data are presented.


Subject(s)
Computational Biology , Genomics , Metabolic Networks and Pathways , Metabolomics , Software , Algorithms , Animals , Computational Biology/methods , Data Analysis , Databases, Factual , Genomics/statistics & numerical data , Humans , Metabolomics/statistics & numerical data , Models, Biological , User-Computer Interface , Web Browser
9.
Front Nutr ; 7: 600215, 2020.
Article in English | MEDLINE | ID: mdl-33392239

ABSTRACT

The native Australian green plum (Buchanania obovata) is a small fruit that grows in the northern parts of the Northern Territory and Western Australia. The fruit belongs to the family Anacardiaceae, which includes the other agriculturally important fruit mangoes, pistachios and cashew nuts. The green plum is a favored species of fruit for the Aboriginal communities and an important bush food in the Northern Territory. To date, only minimal scientific studies have been performed on the green plum as a food. This review is about plant foods in the family Anacardiaceae and the key nutritional compounds that occur in these fruit and nuts. It looks at the more traditional nutrient profiles, some key health metabolites, allergens and anti-nutrients that occur, and the role these foods play in the health of populations. This provides a guide for future studies of the green plum to show what nutritional and anti-nutritional properties and compounds should be analyzed and if there are areas where future studies should focus. This review includes an update on studies and analysis of the green plum and how its nutritional properties give it potential as a food for diet diversification in Australia.

10.
Pathog Dis ; 77(2)2019 03 01.
Article in English | MEDLINE | ID: mdl-30915434

ABSTRACT

Non-typeable Haemophilus influenzae (NTHi) is a major pathogen in upper and lower respiratory tract infections in humans, and is increasingly also associated with invasive disease. We have examined two unrelated NTHi invasive disease isolates, R2866 and C188, in order to identify metabolic and physiological properties that distinguish them from respiratory tract disease isolates such as Hi2019. While the general use of the Hi metabolic network was similar across all three strains, the two invasive isolates secreted increased amounts of succinate, which can have anti-inflammatory properties. In addition, they showed a common shift in their carbon source utilization patterns, with strongly enhanced metabolism of nucleoside substrates, glucose and sialic acid. The latter two are major compounds present in blood and cerebrospinal fluid (CSF). Interestingly, C188 and R2866 also shared a reduced ability to invade or survive intracellularly in 16HBE14 bronchial epithelial cells relative to Hi2019 (4-fold (4 h), 25-fold (24 h) reduction). Altered metabolic properties, such as the ones observed here, could arise from genomic adaptations that NTHi undergo during infection. Together these data indicate that shifts in substrate preferences in otherwise conserved metabolic pathways may underlie strain niche specificity and thus have the potential to alter the outcomes of host-NTHi interactions.


Subject(s)
Adaptation, Physiological , Energy Metabolism , Haemophilus Infections/microbiology , Haemophilus influenzae/pathogenicity , Biofilms , Energy Metabolism/genetics , Gene Expression Regulation, Bacterial , Genome, Bacterial , Genomics , Haemophilus influenzae/classification , Host-Pathogen Interactions , Humans , Microbial Viability , Oxygen Consumption , Phenotype , Pulmonary Disease, Chronic Obstructive/etiology , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , Respiratory Mucosa/microbiology
11.
Front Mol Biosci ; 5: 96, 2018.
Article in English | MEDLINE | ID: mdl-30488036

ABSTRACT

Metabolism is one of the attributes of life and supplies energy and building blocks to organisms. Therefore, understanding metabolism is crucial for the understanding of complex biological phenomena. Despite having been in the focus of research for centuries, our picture of metabolism is still incomplete. Metabolomics, the systematic analysis of all small molecules in a biological system, aims to close this gap. In order to facilitate such investigations a blueprint of the metabolic network is required. Recently, several metabolic network reconstructions for the model organism Caenorhabditis elegans have been published, each having unique features. We have established the WormJam Community to merge and reconcile these (and other unpublished models) into a single consensus metabolic reconstruction. In a series of workshops and annotation seminars this model was refined with manual correction of incorrect assignments, metabolite structure and identifier curation as well as addition of new pathways. The WormJam consensus metabolic reconstruction represents a rich data source not only for in silico network-based approaches like flux balance analysis, but also for metabolomics, as it includes a database of metabolites present in C. elegans, which can be used for annotation. Here we present the process of model merging, correction and curation and give a detailed overview of the model. In the future it is intended to expand the model toward different tissues and put special emphasizes on lipid metabolism and secondary metabolism including ascaroside metabolism in accordance to their central role in C. elegans physiology.

12.
Prostate Int ; 5(4): 149-157, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29188202

ABSTRACT

BACKGROUND: Diagnosis and monitoring of localized prostate cancer requires discovery and validation of noninvasive biomarkers. Nuclear magnetic resonance (NMR)-based metabolomics of seminal plasma reportedly improves diagnostic accuracy, but requires validation in a high-risk clinical cohort. MATERIALS AND METHODS: Seminal plasma samples of 151 men being investigated for prostate cancer were analyzed with 1H-NMR spectroscopy. After adjustment for buffer (add-to-subtract) and endogenous enzyme influence on metabolites, metabolite profiling was performed with multivariate statistical analysis (principal components analysis, partial least squares) and targeted quantitation. RESULTS: Seminal plasma metabolites best predicted low- and intermediate-risk prostate cancer with differences observed between these groups and benign samples. Lipids/lipoproteins dominated spectra of high grade samples with less metabolite contributions. Overall prostate cancer prediction using previously described metabolites was not validated. CONCLUSION: Metabolomics of seminal plasma in vitro may assist urologists with diagnosis and monitoring of either low or intermediate grade prostate cancer. Less clinical benefit may be observed for high-risk patients. Further investigation in active surveillance cohorts, and/or in combination with in vivo magnetic resonance spectroscopic imaging may further optimize localized prostate cancer outcomes.

13.
Methods Mol Biol ; 1537: 79-105, 2017.
Article in English | MEDLINE | ID: mdl-27924589

ABSTRACT

NMR-based metabolomics is an established technique for characterizing the metabolite profile of biological fluids and investigating how metabolite profiles change in response to biological and/or clinical stimuli. Thus, NMR-based metabolomics has the potential to discover biomarkers for diagnosis, prognosis, and/or therapy of clinical conditions, as well as to unravel the physiology underlying clinical conditions. Here, we describe a detailed protocol for NMR-based metabolomics of oral biofluids, including sample collection, sample handling, NMR data acquisition, and processing. In addition, we give a general overview of the statistical analysis of the resulting metabolomic data.


Subject(s)
Gingival Crevicular Fluid/metabolism , Magnetic Resonance Spectroscopy/methods , Metabolomics/methods , Proteome , Saliva/metabolism , Computational Biology/methods , Data Interpretation, Statistical , Humans
14.
Prostate Int ; 4(3): 97-102, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27689066

ABSTRACT

BACKGROUND: Prostate cancer (PCa) diagnosis requires improvement with the aid of more accurate biomarkers. Postejaculate urethral washings (PEUW) could be a physiological equivalent to urine obtained following rectal prostatic massage, the current basis for the prostate cancer antigen 3 (PCA3) test. The aim of this study was to investigate if PEUW contained prostate-based material, evidenced by the presence of prostate specific antigen (PSA), and to evaluate the diagnostic performance of PEUW-based biomarkers. METHODS: Male patients referred for elevated serum PSA or abnormal digital rectal examination provided ejaculate and PEUW samples. PSA, PCA3, and ß2-microglobulin (ß2M) were quantified in ejaculate and PEUW and compared with absolute and clinically significant (according to D'Amico criteria) PCa presence, as determined by biopsies. Diagnostic performance was determined and compared with serum PSA using receiver operating characteristic analysis. RESULTS: From 83 patients who provided PEUW samples, paired analysis with ejaculate samples was possible for 38 patients, while analysis in an unpaired, extended cohort was possible for 62 patients. PSA and PCA3 were detected in PEUW, normalized to ß2M, and PCA3:PSA was calculated. In predicting absolute PCa status, PCA3:ß2M in ejaculate [area under the curve (AUC) 0.717] and PEUW (AUC 0.569) were insignificantly better than PCA3:PSA (AUC 0.668 and 0.431, respectively) and comparable with serum PSA (AUC 0.617) with similar trends observed for the extended cohort. When considering clinically significant PCa presence, serum PSA in the comparison (AUC 0.640) and extended cohorts (AUC 0.665) was comparable with PCA3: ß2M (AUC 0.667) and PCA3:PSA (AUC 0.605) in ejaculate, with lower estimates for PEUW in the comparison (PCA3: ß2M AUC 0.496; PCA3:PSA AUC 0.342) and extended (PCA3: ß2M AUC 0.497; PCA3:PSA AUC 0.469) cohorts. The statistical analysis was limited by sample size. CONCLUSION: PEUW contains prostatic material, but has limited diagnostic accuracy when considering cell-derived DNA analysis. PCA3-based markers in ejaculate are comparable to serum PSA and digital rectal examination-urine markers.

15.
Contemp Clin Trials ; 50: 16-20, 2016 09.
Article in English | MEDLINE | ID: mdl-27370230

ABSTRACT

BACKGROUND: Atorvastatin and metformin are known energy restricting mimetic agents that act synergistically to produce molecular and metabolic changes in advanced prostate cancer (PCa). This trial seeks to determine whether these drugs favourably alter selected parameters in men with clinically-localized, aggressive PCa. METHODS/DESIGN: This prospective phase II randomized, controlled window trial is recruiting men with clinically significant PCa, confirmed by biopsy following multiparametric MRI and intending to undergo radical prostatectomy. Ethical approval was granted by the Royal Brisbane and Women's Hospital Human and The University of Queensland Medical Research Ethics Committees. Participants are being randomized into four groups: metformin with placebo; atorvastatin with placebo; metformin with atorvastatin; or placebo alone. Capsules are consumed for 8weeks, a duration selected as the most appropriate period in which histological and biochemical changes may be observed while allowing prompt treatment with curative intent of clinically significant PCa. At recruitment and prior to RP, participants provide blood, urine and seminal fluid. A subset of participants will undergo 7Tesla magnetic resonance spectroscopy to compare metabolites in-vivo with those in seminal fluid and biopsied tissue. The primary end point is biochemical evolution, defined using biomarkers (serum prostate specific antigen; PCA3 and citrate in seminal fluid and prostatic tissue). Standard pathological assessment will be undertaken. DISCUSSION: This study is designed to assess the potential synergistic action of metformin and atorvastatin on PCa tumour biology. The results may determine simple methods of tumour modulation to reduce disease progression.


Subject(s)
Atorvastatin/therapeutic use , Metformin/therapeutic use , Prostatic Neoplasms/drug therapy , Research Design , Antigens, Neoplasm/analysis , Biomarkers, Tumor , Citric Acid/analysis , Double-Blind Method , Drug Therapy, Combination , Humans , Male , Prospective Studies , Prostate-Specific Antigen/blood
16.
Prostate ; 75(5): 539-49, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25597828

ABSTRACT

BACKGROUND AND METHODS: Here, we report on the evaluation of the diagnostic performance of ejaculate-derived PCA3, Hepsin, and miRNAs to complement serum PSA to detect prostate cancer. cDNA was prepared from 152 candidate specimens following RNA isolation and amplification for PSA, PCA3 and Hepsin qPCR, with 66 having adequate RNA for all three assays. Small RNA sequencing and examination of PCa-associated miRNAs miR-200b, miR-200c, miR-375 and miR-125b was performed on 20 specimens. We compared findings from prostate biopsies using D'Amico and PRIAS classifications and in relation to whole gland histopathology following radical prostatectomy. Multivariate logistic regression modeling and clinical risk (incorporating standard clinicopathological variables) were performed for all ejaculate-based markers. RESULTS: While Hepsin alone was not of predictive value, the Hepsin:PCA3 ratio together with serum PSA, expressed as a univariate composite score based on multivariate logistic regression, was shown to be a better predictor than PSA alone of prostate cancer status (AUC 0.724 vs. 0.676) and risk, using D'Amico (AUC 0.701 vs. 0.680) and PRIAS (AUC 0.679 vs. 0.659) risk stratification criteria as classified using prostate biopsies. It was also possible to analyse a subgroup of patients for miRNA expression with miR-200c (AUC 0.788) and miR-375 (AUC 0.758) showing best single marker performance, while a combination of serum PSA, miR-200c, and miR-125b further improved prediction for prostate cancer status when compared to PSA alone determined by biopsy (AUC 0.869 vs. 0.672; P < 0.05), and risk (D'Amico/PRIAS) as well as by radical prostatectomy histology (AUC 0.809 vs. 0.690). For prostate cancer status by biopsy, at a sensitivity of 90%, the specificity of the test increased from 11% for PSA alone to 67% for a combination of PSA, miR-200c, and miR-125b. CONCLUSIONS: These results show that use of a combination of different types of genetic markers in ejaculate together with serum PSA are at least as sensitive as those reported in DRE urine. Furthermore, a combination of serum PSA and selected miRNAs improved prediction of prostate cancer status. This approach may be helpful in triaging patients for MRI and biopsy, when confirmed by larger studies.


Subject(s)
Antigens, Neoplasm/metabolism , Biomarkers, Tumor/metabolism , MicroRNAs/metabolism , Prostate-Specific Antigen/blood , Prostate/pathology , Prostatic Neoplasms/diagnosis , Semen/metabolism , Serine Endopeptidases/metabolism , Aged , Humans , Logistic Models , Male , Middle Aged , ROC Curve , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity
17.
PLoS One ; 9(6): e99726, 2014.
Article in English | MEDLINE | ID: mdl-24937646

ABSTRACT

The ovine Callipyge mutation causes postnatal muscle hypertrophy localized to the pelvic limbs and torso, as well as body leanness. The mechanism underpinning enhanced muscle mass is unclear, as is the systemic impact of the mutation. Using muscle fibre typing immunohistochemistry, we confirmed muscle specific effects and demonstrated that affected muscles had greater prevalence and hypertrophy of type 2X fast twitch glycolytic fibres and decreased representation of types 1, 2C, 2A and/or 2AX fibres. To investigate potential systemic effects of the mutation, proton NMR spectra of plasma taken from lambs at 8 and 12 weeks of age were measured. Multivariate statistical analysis of plasma metabolite profiles demonstrated effects of development and genotype but not gender. Plasma from Callipyge lambs at 12 weeks of age, but not 8 weeks, was characterized by a metabolic profile consistent with contributions from the affected hypertrophic fast twitch glycolytic muscle fibres. Microarray analysis of the perirenal adipose tissue depot did not reveal a transcriptional effect of the mutation in this tissue. We conclude that there is an indirect systemic effect of the Callipyge mutation in skeletal muscle in the form of changes of blood metabolites, which may contribute to secondary phenotypes such as body leanness.


Subject(s)
Adiposity/genetics , Muscular Diseases/veterinary , Sheep, Domestic/genetics , Sheep/genetics , Adipose Tissue/metabolism , Animals , Biomarkers/blood , DNA, Intergenic , Genetic Association Studies , Hypertrophy/blood , Hypertrophy/genetics , Hypertrophy/veterinary , Laminin/metabolism , Metabolic Networks and Pathways , Metabolome , Multivariate Analysis , Muscle Fibers, Fast-Twitch/metabolism , Muscle Fibers, Fast-Twitch/pathology , Muscle, Skeletal/pathology , Muscular Diseases/blood , Muscular Diseases/genetics , Mutation , Myosin Heavy Chains/metabolism , Phenotype , Sheep Diseases , Transcriptome
18.
G3 (Bethesda) ; 3(4): 675-686, 2013 04 09.
Article in English | MEDLINE | ID: mdl-23550133

ABSTRACT

The opportunistic fungal pathogen Cryptococcus neoformans is a leading cause of mortality among the human immunodeficiency virus/acquired immunodeficiency syndrome population and is known for frequently causing life-threatening relapses. To investigate the potential contribution of in-host microevolution to persistence and relapse, we have analyzed two serial isolates obtained from a patient with acquired immunodeficiency syndrome who suffered an initial and relapse episode of cryptococcal meningoencephalitis. Despite being identical by multilocus sequence typing, the isolates differ phenotypically, exhibiting changes in key virulence factors, nutrient acquisition, metabolic profiles, and the ability to disseminate in an animal model. Whole-genome sequencing uncovered a clonal relationship, with only a few unique differences. Of these, two key changes are expected to explain the phenotypic differences observed in the relapse isolate: loss of a predicted AT-rich interaction domain protein and changes in copy number of the left and right arms of chromosome 12. Gene deletion of the predicted transcriptional regulator produced changes in melanin, capsule, carbon source use, and dissemination in the host, consistent with the phenotype of the relapse isolate. In addition, the deletion mutant displayed altered virulence in the murine model. The observed differences suggest the relapse isolate evolved subsequent to penetration of the central nervous system and may have gained dominance following the administration of antifungal therapy. These data reveal the first molecular insights into how the Cryptococcus neoformans genome changes during infection of humans and the manner in which microevolution progresses in this deadly fungal pathogen.

19.
Growth Horm IGF Res ; 23(1-2): 29-36, 2013.
Article in English | MEDLINE | ID: mdl-23380306

ABSTRACT

OBJECTIVE: Growth hormone (GH) is a protein hormone with important roles in growth and metabolism. The objective of this study was to investigate the metabolism of a human subject with severe GH deficiency (GHD) due to a PIT-1 gene mutation and the metabolic effects of GH therapy using Nuclear Magnetic Resonance (NMR)-based metabonomics. NMR-based metabonomics is a platform that allows the metabolic profile of biological fluids such as urine to be recorded, and any alterations in the profile modulated by GH can potentially be detected. DESIGN: Urine samples were collected from a female subject with severe GHD before, during and after GH therapy, and from healthy age- and sex-matched controls and analysed with NMR-based metabonomics. SETTING: The samples were collected at a hospital and the study was performed at a research facility. PARTICIPANTS: We studied a 17 year old female adolescent with severe GHD secondary to PIT-1 gene mutation who had reached final adult height and who had ceased GH therapy for over 3 years. The subject was subsequently followed for 5 years with and without GH therapy. Twelve healthy age-matched female subjects acted as control subjects. INTERVENTION: The GH-deficient subject re-commenced GH therapy at a dose of 1 mg/day to normalise serum IGF-1 levels. MAIN OUTCOME MEASURES: Urine metabolic profiles were recorded using NMR spectroscopy and analysed with multivariate statistics to distinguish the profiles at different time points and identify significant metabolites affected by GH therapy. RESULTS: NMR-based metabonomics revealed that the metabolic profile of the GH-deficient subject altered with GH therapy and that her profile was different from healthy controls before, and during withdrawal of GH therapy. CONCLUSION: This study illustrates the potential use of NMR-based metabonomics for monitoring the effects of GH therapy on metabolism by profiling the urine of GH-deficient subjects. Further controlled studies in larger numbers of GH-deficient subjects are required to determine the clinical benefits of NMR-based metabonomics in subjects receiving GH therapy.


Subject(s)
Dwarfism, Pituitary/drug therapy , Dwarfism, Pituitary/genetics , Dwarfism, Pituitary/urine , Human Growth Hormone/therapeutic use , Metabolome/drug effects , Metabolomics/methods , Transcription Factor Pit-1/genetics , Adolescent , Biomarkers, Pharmacological/metabolism , Biomarkers, Pharmacological/urine , Case-Control Studies , Dwarfism, Pituitary/metabolism , Female , Follow-Up Studies , Growth Charts , Hormone Replacement Therapy , Human Growth Hormone/deficiency , Humans , Mutation, Missense/physiology , Nuclear Magnetic Resonance, Biomolecular , Urinalysis/methods
20.
Science ; 338(6108): 807-10, 2012 Nov 09.
Article in English | MEDLINE | ID: mdl-23139334

ABSTRACT

Phosphine is a small redox-active gas that is used to protect global grain reserves, which are threatened by the emergence of phosphine resistance in pest insects. We find that polymorphisms responsible for genetic resistance cluster around the redox-active catalytic disulfide or the dimerization interface of dihydrolipoamide dehydrogenase (DLD) in insects (Rhyzopertha dominica and Tribolium castaneum) and nematodes (Caenorhabditis elegans). DLD is a core metabolic enzyme representing a new class of resistance factor for a redox-active metabolic toxin. It participates in four key steps of core metabolism, and metabolite profiles indicate that phosphine exposure in mutant and wild-type animals affects these steps differently. Mutation of DLD in C. elegans increases arsenite sensitivity. This specific vulnerability may be exploited to control phosphine-resistant insects and safeguard food security.


Subject(s)
Caenorhabditis elegans/enzymology , Coleoptera/enzymology , Dihydrolipoamide Dehydrogenase/genetics , Insecticide Resistance/genetics , Insecticides , Phosphines , Tribolium/enzymology , Animals , Arsenicals/pharmacology , Arsenites/pharmacology , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Catalytic Domain , Coleoptera/drug effects , Coleoptera/genetics , Coleoptera/metabolism , Dihydrolipoamide Dehydrogenase/chemistry , Dihydrolipoamide Dehydrogenase/metabolism , Insect Proteins/chemistry , Insect Proteins/genetics , Insect Proteins/metabolism , Insecticides/pharmacology , Metabolic Networks and Pathways , Molecular Sequence Data , Mutation , Oxidation-Reduction , Pesticides , Phosphines/pharmacology , Polymorphism, Genetic , Protein Multimerization , Tribolium/drug effects , Tribolium/genetics , Tribolium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...