Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Syst Biol ; 7 Suppl 1: S4, 2013.
Article in English | MEDLINE | ID: mdl-24268033

ABSTRACT

BACKGROUND: This paper presents a novel model for proliferating cell populations in labeling experiments. It is especially tailored to the technique of Bromodeoxyuridine (BrdU), which is taken up by dividing cells and thus accumulates with increasing division number during uplabeling. The study of the evolving label intensities of BrdU labeled cell populations is aimed at quantifying proliferation properties such as division and death rates. RESULTS: In contrast to existing models, our model considers a labeling efficacy that follows a distribution, rather than a uniform value. It thereby allows to account for noise as well as possibly space-dependent heterogeneity in the effective label uptake of the individual cells in a population. Furthermore, it enables more informative comparison with experimental data: The population-level label distribution is provided as a model output, thereby increasing the information content compared to existing models that give the fraction of labeled cells or the mean label intensity. CONCLUSION: The presented model is to our knowledge the first one that predicts the full label distribution for BrdU labeling experiments. Thus, it can exploit more information, namely the full intensity distribution, from labeling measurements, and thereby opens up new quantitative insights into cell proliferation.


Subject(s)
Affinity Labels/metabolism , Bromodeoxyuridine/metabolism , Cell Proliferation , Models, Biological , Computer Simulation
2.
Proc Natl Acad Sci U S A ; 106(52): 22335-40, 2009 Dec 29.
Article in English | MEDLINE | ID: mdl-20018774

ABSTRACT

Many studies have aimed to understand food webs by investigating components such as trophic links (one consumer taxon eats one resource taxon), tritrophic interactions (one consumer eats an intermediate taxon, which eats a resource), or longer chains of links. We show here that none of these components (links, tritrophic interactions, and longer chains), individually or as an ensemble, accounts fully for the properties of the next higher level of organization. As a cell is more than its molecules, as an organ is more than its cells, and as an organism is more than its organs, in a food web, new structure emerges at every organizational level up to and including the whole web. We demonstrate the emergence of properties at progressively higher levels of structure by using all of the directly observed, appropriately organized, publicly available food web datasets with relatively complete trophic link data and with average body mass and population density data for each taxon. There are only three such webs, those of Tuesday Lake, Michigan, in 1984 and 1986, and Ythan Estuary, Scotland. We make the data freely available online with this report. Differences in web patterns between Tuesday Lake and Ythan Estuary, and similarities of Tuesday Lake in 1984 and 1986 despite 50% turnover of species, suggest that the patterns we describe respond to major differences between ecosystem types.


Subject(s)
Food Chain , Animals , Body Size , Databases, Factual , Ecosystem , Fresh Water , Marine Biology , Michigan , Models, Biological , Population Density , Scotland , Seawater
SELECTION OF CITATIONS
SEARCH DETAIL
...