Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Open Forum Infect Dis ; 11(2): ofad679, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38370292

ABSTRACT

Background: Severe coccidioidomycosis presenting with respiratory failure is an uncommon manifestation of disease. Current knowledge of this condition is limited to case reports and small case series. Methods: A retrospective multicenter review of patients with coccidioidomycosis-associated acute respiratory distress syndrome (CA-ARDS) was conducted. It assessed clinical and laboratory variables at the time of presentation, reviewed the treatment course, and compared this cohort with a national database of patients with noncoccidioidomycosis ARDS. Survivors and nonsurvivors of coccidioidomycosis were also compared to determine prognostic factors. Results: In this study, CA-ARDS (n = 54) was most common in males, those of Hispanic ethnicity, and those with concurrent diabetes mellitus. As compared with the PETAL network database (Prevention and Early Treatment of Acute Lung Injury; n = 1006), patients with coccidioidomycosis were younger, had fewer comorbid conditions, and were less acidemic. The 90-day mortality was 15.4% for patients with coccidioidomycosis, as opposed to 42.6% (P < .0001) for patients with noncoccidioidomycosis ARDS. Patients with coccidioidomycosis who died, as compared with those who survived, were older, had higher APACHE II scores (Acute Physiology and Chronic Health Evaluation), and did not receive corticosteroid therapy. Conclusions: CA-ARDS is an uncommon but morbid manifestation of infection. When compared with a national database, the overall mortality appears favorable vs other causes of ARDS. Patients with CA-ARDS had a low overall mortality but required prolonged antifungal therapy. The utility of corticosteroids in this condition remains unconfirmed.

2.
medRxiv ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38045302

ABSTRACT

Rationale: Pulmonary innate immune cells play a central role in the initiation and perpetuation of chronic obstructive pulmonary disease (COPD), however the precise mechanisms that orchestrate the development and severity of COPD are poorly understood. Objectives: We hypothesized that the recently described family of innate lymphoid cells (ILCs) play an important role in COPD. Methods: Subjects with COPD and healthy controls were clinically evaluated, and their sputum samples were assessed by flow cytometry. A mouse model of spontaneous COPD [genetically deficient in surfactant protein-D (SP-D -/- )] and ozone (O 3 ) exposure were used to examine the mechanism by which lack of functional SP-D may skew ILC2s to produce IL-17A in combination with IL-5 and IL-13, leading to a mixed inflammatory profile and more severe disease. Measurements and Main Results: COPD was characterized by poor spirometry, sputum inflammation, and the emergence of sputum GATA3 + ILCs (ILC2s), but not T-bet + ILCs (ILC1s) nor RORγt + ILCs (ILC3s). COPD subjects with elevated sputum ILC2s (the ILC2 high group) had worse spirometry and sputum neutrophilia and eosinophilia than healthy and ILC2 low subjects. This was associated with the presence of dual-positive IL-5 + IL-17A + and IL-13 + IL-17A + ILCs and nonfunctional SP-D in the sputum in ILC2 high subjects. SP-D -/- mice showed spontaneous airway neutrophilia. Lack of SP-D in the mouse lung licensed ILC2s to produce IL-17A, which was dose-dependently inhibited by recombinant SP-D. SP-D -/- mice showed enhanced susceptibility to O 3 -induced airway neutrophilia, which was associated with the emergence of inflammatory IL-13 + IL-17A + ILCs. Conclusions: We report that the presence of sputum ILC2s predicts the severity of COPD, and unravel a novel pathway of IL-17A plasticity in lung ILC2s, prevented by the immunomodulatory protein SP-D.

3.
J Investig Med ; 70(8): 1681-1689, 2022 12.
Article in English | MEDLINE | ID: mdl-35710143

ABSTRACT

Remote patient monitoring allows monitoring high-risk patients through implementation of an expanding number of technologies in coordination with a healthcare team to augment care, with the potential to provide early detection of exacerbation, prompt access to therapy and clinical services, and ultimately improved patient outcomes and decreased healthcare utilization.In this review, we describe the application of remote patient monitoring in chronic obstructive pulmonary disease including the potential benefits and possible barriers to implementation both for the individual and the healthcare system.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/therapy , Monitoring, Physiologic , Delivery of Health Care
4.
J Breath Res ; 16(1)2021 12 20.
Article in English | MEDLINE | ID: mdl-34852327

ABSTRACT

Exhaled breath condensate (EBC) is routinely collected and analyzed in breath research. Because it contains aerosol droplets, EBC samples from SARS-CoV-2 infected individuals harbor the virus and pose the threat of infectious exposure. We report for the first time a safe and consistent method to fully inactivate SARS-CoV-2 in EBC samples and make EBC samples safe for processing and analysis. EBC samples containing infectious SARS-CoV-2 were treated with several concentrations of acetonitrile. The most commonly used 10% acetonitrile treatment for EBC processing failed to completely inactivate the virus in samples and viable virus was detected by the assay of SARS-CoV-2 infection of Vero E6 cells in a biosafety level 3 laboratory. Treatment with either 50% or 90% acetonitrile was effective to completely inactivate the virus, resulting in safe, non-infectious EBC samples that can be used for metabolomic analysis. Our study provides SARS-CoV-2 inactivation protocol for the collection and processing of EBC samples in the clinical setting and for advancing to metabolic assessments in health and disease.


Subject(s)
COVID-19 , SARS-CoV-2 , Breath Tests , Exhalation , Humans , Metabolomics
5.
J Breath Res ; 15(4)2021 08 19.
Article in English | MEDLINE | ID: mdl-34343985

ABSTRACT

Respiratory viral infections are considered a major public health threat, and breath metabolomics can provide new ways to detect and understand how specific viruses affect the human pulmonary system. In this pilot study, we characterized the metabolic composition of human breath for an early diagnosis and differentiation of influenza viral infection, as well as other types of upper respiratory viral infections. We first studied the non-specific effects of planned seasonal influenza vaccines on breath metabolites in healthy subjects after receiving the immunization. We then investigated changes in breath content from hospitalized patients with flu-like symptoms and confirmed upper respiratory viral infection. The exhaled breath was sampled using a custom-made breath condenser, and exhaled breath condensate (EBC) samples were analysed using liquid chromatography coupled to quadruplole-time-of-flight mass spectrometer (LC-qTOF). All metabolomic data was analysed using both targeted and untargeted approaches to detect specific known biomarkers from inflammatory and oxidative stress biomarkers, as well as new molecules associated with specific infections. We were able to find clear differences between breath samples collected before and after flu vaccine administration, together with potential biomarkers that are related to inflammatory processes and oxidative stress. Moreover, we were also able to discriminate samples from patients with flu-related symptoms that were diagnosed with confirmatory respiratory viral panels (RVPs). RVP positive and negative differences were identified, as well as differences between specific viruses defined. These results provide very promising information for the further study of the effect of influenza A and other viruses in human systems by using a simple and non-invasive specimen like breath.


Subject(s)
Influenza Vaccines , Influenza, Human , Biomarkers , Breath Tests , Exhalation , Humans , Influenza, Human/diagnosis , Influenza, Human/prevention & control , Pilot Projects , Vaccination
6.
J Infect Dis ; 224(10): 1742-1750, 2021 11 22.
Article in English | MEDLINE | ID: mdl-33858010

ABSTRACT

BACKGROUND: Respiratory viral infections are common and potentially devastating to patients with underlying lung disease. Diagnosing viral infections often requires invasive sampling, and interpretation often requires specialized laboratory equipment. Here, we test the hypothesis that a breath test could diagnose influenza and rhinovirus infections using an in vitro model of the human airway. METHODS: Cultured primary human tracheobronchial epithelial cells were infected with either influenza A H1N1 or rhinovirus 1B and compared with healthy control cells. Headspace volatile metabolite measurements of cell cultures were made at 12-hour time points postinfection using a thermal desorption-gas chromatography-mass spectrometry method. RESULTS: Based on 54 compounds, statistical models distinguished volatile organic compound profiles of influenza- and rhinovirus-infected cells from healthy counterparts. Area under the curve values were 0.94 for influenza, 0.90 for rhinovirus, and 0.75 for controls. Regression analysis predicted how many hours prior cells became infected with a root mean square error of 6.35 hours for influenza- and 3.32 hours for rhinovirus-infected cells. CONCLUSIONS: Volatile biomarkers released by bronchial epithelial cells could not only be used to diagnose whether cells were infected, but also the timing of infection. Our model supports the hypothesis that a breath test could serve to diagnose viral infections.


Subject(s)
Communicable Diseases , Influenza A Virus, H1N1 Subtype , Influenza, Human , Volatile Organic Compounds , Biomarkers , Humans , Influenza, Human/diagnosis , Influenza, Human/metabolism , Rhinovirus , Volatile Organic Compounds/analysis
8.
Clin Infect Dis ; 71(16): 2222-2226, 2020 11 19.
Article in English | MEDLINE | ID: mdl-32227197

ABSTRACT

This is the first known community transmission case of the novel coronavirus disease (COVID-19) in the United States, with significant public health implications. Diagnosis of COVID-19 is currently confirmed with PCR based testing of appropriate respiratory samples. Given the absence of travel or known exposure history, this patient did not meet the criteria for testing according to CDC guidelines at the time of her presentation. Since this case, any patient with severe disease (eg, ARDS or pneumonia) requiring hospitalization without an explanatory diagnosis can be tested even if no clear source of exposure is identified. While influencing national health policies for revising screening criteria, this case also highlighted significant knowledge gaps in diagnosis and treatment and a desperate need for early, widespread, fast and cheap testing for COVID-19.


Subject(s)
COVID-19/diagnostic imaging , Community-Acquired Infections/virology , Respiratory Distress Syndrome/virology , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Adult , Alanine/analogs & derivatives , Alanine/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/complications , Community-Acquired Infections/drug therapy , Female , Humans , Middle Aged , Respiratory Distress Syndrome/diagnostic imaging , Risk Factors , Shock, Septic/etiology , Thorax/diagnostic imaging , Tomography, X-Ray Computed , Treatment Outcome , United States/epidemiology , COVID-19 Drug Treatment
10.
Diagnostics (Basel) ; 9(3)2019 Aug 21.
Article in English | MEDLINE | ID: mdl-31438639

ABSTRACT

Portable and wearable medical instruments are poised to play an increasingly important role in health monitoring. Mobile spirometers are available commercially, and are used to monitor patients with advanced lung disease. However, these commercial monitors have a fixed product architecture determined by the manufacturer, and researchers cannot easily experiment with new configurations or add additional novel sensors over time. Spirometry combined with exhaled breath metabolite monitoring has the potential to transform healthcare and improve clinical management strategies. This research provides an updated design and benchmark testing for a flexible, portable, open access architecture to measure lung function, using common Arduino/Android microcontroller technologies. To demonstrate the feasibility and the proof-of-concept of this easily-adaptable platform technology, we had 43 subjects (healthy, and those with lung diseases) perform three spirometry maneuvers using our reconfigurable device and an office-based commercial spirometer. We found that our system compared favorably with the traditional spirometer, with high accuracy and agreement for forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC), and gas measurements were feasible. This provides an adaptable/reconfigurable open access "personalized medicine" platform for researchers and patients, and new chemical sensors and other modular instrumentation can extend the flexibility of the device in the future.

11.
J Breath Res ; 14(1): 016002, 2019 10 21.
Article in English | MEDLINE | ID: mdl-31430743

ABSTRACT

Volatile organic compound (VOC) emissions were measured from Chinese Hamster Ovary (CHO) cell and T cell bioreactor gas exhaust lines with the goal of non-invasively metabolically profiling the expansion process. Measurements of cellular 'breath' were made directly from the gas exhaust lines using polydimethylsiloxane (PDMS)-coated magnetic stir bars, which underwent subsequent thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) analysis. Baseline VOC profiles were observed from bioreactors filled with only liquid media. After inoculation, unique VOC profiles correlated to cell expansion over the course of 8 d. Partial least squares (PLS) regression models were built to predict cell culture density based on VOC profiles of CHO and T cells (R 2 = 0.671 and R 2 = 0.769, respectively, based on a validation data set). T cell runs resulted in 47 compounds relevant to expansion while CHO cell runs resulted in 45 compounds; the 20 most relevant compounds of each cell type were putatively identified. On the final experimental days, sorbent-covered stir bars were placed directly into cell-inoculated media and into media controls. Liquid-based measurements from spent media containing cells could be distinguished from media-only controls, indicating soluble VOCs excreted by the cells during expansion. A PLS-discriminate analysis (PLS-DA) was performed, and 96 compounds differed between T cell-inoculated media and media controls with 72 compounds for CHO cells; the 20 most relevant compounds of each cell line were putatively identified. This work demonstrates that the volatilome of cell cultures can be exploited by chemical detectors in bioreactor gas and liquid waste lines to non-invasively monitor cellular health and could possibly be used to optimize cell expansion conditions 'on-the-fly' with appropriate control loop systems. Although the basis for statistical models included compounds without certain identification, this work provides a foundation for future research of bioreactor emissions. Future studies must move towards identifying relevant compounds for understanding of underlying biochemistry.


Subject(s)
Bioreactors , T-Lymphocytes/metabolism , Volatile Organic Compounds/analysis , Animals , CHO Cells , Cell Proliferation , Cricetinae , Cricetulus , Gas Chromatography-Mass Spectrometry/methods , Humans , Least-Squares Analysis , Principal Component Analysis
12.
J Investig Med ; 67(7): 1029-1041, 2019 10.
Article in English | MEDLINE | ID: mdl-31352362

ABSTRACT

Asthma is a complex inflammatory disease with many triggers. The best understood asthma inflammatory pathways involve signals characterized by peripheral eosinophilia and elevated immunoglobulin E levels (called T2-high or allergic asthma), though other asthma phenotypes exist (eg, T2-low or non-allergic asthma, eosinophilic or neutrophilic-predominant). Common triggers that lead to poor asthma control and exacerbations include respiratory viruses, aeroallergens, house dust, molds, and other organic and inorganic substances. Increasingly recognized non-allergen triggers include tobacco smoke, small particulate matter (eg, PM2.5), and volatile organic compounds. The interaction between respiratory viruses and non-allergen asthma triggers is not well understood, though it is likely a connection exists which may lead to asthma development and/or exacerbations. In this paper we describe common respiratory viruses and non-allergen triggers associated with asthma. In addition, we aim to show the possible interactions, and potential synergy, between viruses and non-allergen triggers. Finally, we introduce a new clinical approach that collects exhaled breath condensates to identify metabolomics associated with viruses and non-allergen triggers that may promote the early management of asthma symptoms.


Subject(s)
Allergens/immunology , Asthma/immunology , Asthma/virology , Environment , Viruses/immunology , Air Pollution/adverse effects , Animals , Humans , Smoking/adverse effects
13.
J Breath Res ; 13(4): 046014, 2019 10 03.
Article in English | MEDLINE | ID: mdl-31349234

ABSTRACT

Exhaled breath condensate (EBC) collection provides a promising matrix for bioanalysis of endogenous biomarkers of health and also for exogenous compounds like drugs. There is little information regarding drugs and their metabolites contained in breath, as well as their pharmacokinetics. In this present work, we use a simple and non-invasive technique to collect EBC from chronic pain patients using different analgesic opioid drugs to manage pain. Six patients received continuous infusion of morphine and hydromorphone intravenously (IV), together with other analgesic drugs (IV and orally). Repeated sampling of serum and EBC was done at two time points separated by 90 min. The EBC was collected using a glass tube surrounded by dry ice, and an ethanol solvent wash of the glass was performed after EBC extraction to retrieve the apolar compounds stuck to the glass surface. All samples were analyzed with liquid chromatography coupled to mass spectrometry (LC-MS/MS) to identify possible metabolites present in the sample, and to quantify the drugs being used. Several metabolites, such as normorphine (norM), norhydromorphone (norHM) and dihydromorphone (diHM) were detected in both fractions, while hydromorphone 3-glucuronide (HM 3G) was only detected in the solvent rinse fraction. Results were correlated to explain the pharmacokinetics of the main drugs administered. This pilot study presented promising correlations between drug concentrations in blood and breath at different time points for norM, norHM and HM 3G.


Subject(s)
Analgesics, Opioid/metabolism , Breath Tests/methods , Metabolome , Adult , Biomarkers/metabolism , Female , Humans , Male , Pilot Projects , Specimen Handling , Tandem Mass Spectrometry
14.
J Breath Res ; 13(3): 036014, 2019 06 19.
Article in English | MEDLINE | ID: mdl-31063985

ABSTRACT

The respiratory system is continuously exposed to variety of biological and chemical irritants that contain reactive oxygen species, and these are well known to cause oxidative stress responses in lung epithelial cells. There is a clinical need to identify biomarkers of oxidative stress which could potentially support early indicators of disease and health management. To identify volatile biomarkers of oxidative stress, we analyzed the headspace above human bronchial epithelial cell cultures (HBE1) before and after hydrogen peroxide (H2O2) and cigarette smoke extract (CSE) exposure. Using stir bar and headspace sorptive extraction-gas chromatography-mass spectrometry, we searched for volatile organic compounds (VOC) of these oxidative measures. In the H2O2 cell peroxidation experiments, four different H2O2 concentrations (0.1, 0.5, 10, 50 mM) were applied to the HBE1 cells, and VOCs were collected every 12 h over the time course of 48 h. In the CSE cell peroxidation experiments, four different smoke extract concentrations (0%, 10%, 30%, 60%) were applied to the cells, and VOCs were collected every 12 h over the time course of 48 h. We used partial-least squares (PLS) analysis to identify putative compounds from the mass spectrometry results that highly correlated with the known applied oxidative stress. We observed chemical emissions from the cells that related to both the intensity of the oxidative stress and followed distinct time courses. Additionally, some of these chemicals are aldehydes, which are thought to be non-invasive indicators of oxidative stress in exhaled human breath. Together, these results illustrate a powerful in situ cell culture model of oxidative stress that can be used to explore the putative biological genesis of exhaled breath biomarkers that are often observed in human clinical studies.


Subject(s)
Epithelial Cells/pathology , Hydrogen Peroxide/toxicity , Lung/pathology , Metabolomics/methods , Models, Biological , Oxidative Stress , Smoking/adverse effects , Cell Line , Cell Survival/drug effects , Epithelial Cells/drug effects , Humans , Least-Squares Analysis , Oxidative Stress/drug effects , Volatile Organic Compounds/analysis
15.
Anal Chim Acta ; 1006: 49-60, 2018 May 02.
Article in English | MEDLINE | ID: mdl-30016264

ABSTRACT

The non-invasive, quick, and safe collection of exhaled breath condensate makes it a candidate as a diagnostic matrix in personalized health monitoring devices. The lack of standardization in collection methods and sample analysis is a persistent limitation preventing its practical use. The collection method and hardware design are recognized to significantly affect the metabolomic content of EBC samples, but this has not been systematically studied. Here, we completed a series of experiments to determine the sole effect of collection temperature on the metabolomic content of EBC. Temperature is a likely parameter that can be controlled to standardize among different devices. The study considered six temperature levels covering two physical phases of the sample; liquid and solid. The use of a single device in our study allowed keeping saliva filtering and collector surface effects as constant parameters and the temperature as a controlled variable; the physiological differences were minimized by averaging samples from a group of volunteers and a period of time. After EBC collection, we used an organic solvent rinse to collect the non-water-soluble compounds from the condenser surface. This additional matrix enhanced metabolites recovery, was less dependent on temperature changes, and may possibly serve as an additional pointer to standardize EBC sampling methodologies. The collected EBC samples were analyzed with a set of mass spectrometry methods to provide an overview of the compounds and their concentrations present at each temperature level. The total number of volatile and polar non-volatile compounds slightly increased in each physical phase as the collection temperature was lowered to minimum, 0 °C for liquid and -30, -56 °C for solid. The low-polarity non-volatile compounds showed a weak dependence on the collection temperature. The metabolomic content of EBC samples may not be solely dependent on temperature but may be influenced by other phenomena such as greater sample dilution due to condensation from the ambient air at colder temperatures, or due to adhesion properties of the collector surface and occurring chemical reactions. The relative importance of other design parameters such as condenser coating versus temperature requires further investigation.


Subject(s)
Artifacts , Breath Tests/instrumentation , Breath Tests/methods , Equipment Design , Exhalation , Metabolomics , Temperature , Humans , Mass Spectrometry/instrumentation , Metabolomics/instrumentation , Metabolomics/methods
16.
Article in English | MEDLINE | ID: mdl-29783172

ABSTRACT

The human respiratory tract releases volatile metabolites into exhaled breath that can be utilized for noninvasive health diagnostics. To understand the origin of this metabolic process, our group has previously analyzed the headspace above human epithelial cell cultures using solid phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS). In the present work, we improve our model by employing sorbent-covered magnetic stir bars for headspace sorptive extraction (HSSE). Sorbent-coated stir bar analyte recovery increased by 52 times and captured 97 more compounds than SPME. Our data show that HSSE is preferred over liquid extraction via stir bar sorptive extraction (SBSE), which failed to distinguish volatiles unique to the cell samples compared against media controls. Two different cellular media were also compared, and we found that Opti-MEM® is preferred for volatile analysis. We optimized HSSE analytical parameters such as extraction time (24 h), desorption temperature (300 °C) and desorption time (7 min). Finally, we developed an internal standard for cell culture VOC studies by introducing 842 ng of deuterated decane per 5 mL of cell medium to account for error from extraction, desorption, chromatography and detection. This improved model will serve as a platform for future metabolic cell culture studies to examine changes in epithelial VOCs caused by perturbations such as viral or bacterial infections, opening opportunities for improved, noninvasive pulmonary diagnostics.


Subject(s)
Epithelial Cells/metabolism , Gas Chromatography-Mass Spectrometry/methods , Respiratory Mucosa/cytology , Volatile Organic Compounds/analysis , Volatile Organic Compounds/isolation & purification , Cell Line , Humans , Solid Phase Microextraction , Volatile Organic Compounds/metabolism
17.
J Breath Res ; 12(3): 036020, 2018 06 08.
Article in English | MEDLINE | ID: mdl-29771240

ABSTRACT

In this work, we present a hydrophilic self-cleaning condenser surface for the collection of biological and environmental aerosol samples. The condenser is installed in a battery-operated hand-held breath sampling device. The device performance is characterized by the collection and analysis of exhaled breath samples from a group of volunteers. The exhaled breath condensate is collected on a subcooled condenser surface, transferred into a storage vial, and its chemical content is analyzed using mass spectrometric methods. The engineered surface supports upon it a continuous condensation cycle, and this allows the collection of liquid samples exceeding the saturation mass/area limit of a plain hydrophilic surface. The condenser surface employs two constituent parameters: a low surface energy barrier to enhance nucleation and condensation efficiency, and a network of surface microstructures to create a self-cleaning mechanism for fluid aggregation into a reservoir. Removal of the liquid condensate from the condenser surface prevents the formation of a thick liquid layer, and thus maintains a continuous condensation cycle with a minimum decrease in heat transfer efficiency as condensation occurs on the surface. The self-cleaning condenser surfaces may have a number of applications in the collection of biological, chemical, or environmental aerosol samples. Sample phase conversion to liquid can facilitate sample manipulation and chemical analysis of matrices with low concentrations. Here, we demonstrate the use of a self-cleaning microcondenser for the collection of exhaled breath condensate with a hand-held portable device. All breath collections with the two devices were performed with the same group of volunteers under UC Davis IRB protocol 63701-3.


Subject(s)
Breath Tests/methods , Electricity , Exhalation , Hydrophobic and Hydrophilic Interactions , Metabolomics/methods , Gas Chromatography-Mass Spectrometry , Hot Temperature , Humans , Mass Spectrometry , Metabolome , Microtechnology , Surface Properties
18.
Anal Bioanal Chem ; 409(28): 6523-6536, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29063162

ABSTRACT

Monitoring health conditions is essential to detect early asymptomatic stages of a disease. To achieve this, blood, urine and breath samples are commonly used as a routine clinical diagnostic. These samples offer the opportunity to detect specific metabolites related to diseases and provide a better understanding of their development. Although blood samples are commonly used routinely to monitor health, the implementation of a relatively noninvasive technique, such as exhaled breath condensate (EBC) analysis, may further benefit the well-being of both humans and other animals. EBC analysis can be used to track possible physical or biochemical alterations caused by common diseases of the bottlenose dolphin (Tursiops truncatus), such as infections or inflammatory-mediated processes. We have used an untargeted metabolomic method with liquid chromatography-mass spectrometry analysis of EBC samples to determine biomarkers related to disease development. In this study, five dolphins under human care were followed up for 1 year. We collected paired blood, physical examination information, and EBC samples. We then statistically correlated this information to predict specific health alterations. Three dolphins provided promising case study information about biomarkers related to cutaneous infections, respiratory infections, dental disease, or hormonal changes (pregnancy). The use of complementary liquid chromatography platforms, with hydrophilic interaction chromatography and reverse-phased columns, allowed us to detect a wide spectrum of EBC biomarker compounds that could be related to these health alterations. Moreover, these two analytical techniques not only provided complementary metabolite information but in both cases they also provided promising diagnostic information for these health conditions. Graphical abstract Collection of the exhaled condensed breath from a bottlenose dolphin from U.S. Navy Marine Mammal Program (MMP).


Subject(s)
Breath Tests/methods , Dolphins/metabolism , Metabolomics/methods , Animal Diseases/diagnosis , Animal Diseases/metabolism , Animals , Biomarkers/analysis , Chromatography, Liquid/methods , Female , Humans , Male , Tandem Mass Spectrometry/methods
19.
J Investig Med High Impact Case Rep ; 5(3): 2324709617728527, 2017.
Article in English | MEDLINE | ID: mdl-28959693

ABSTRACT

Inhalation of cosmetic talc can lead to pulmonary foreign-body granulomatosis, though fewer than 10 cases of inhaled cosmetic talc-related pulmonary granulomatosis have been reported in adults. We report the case of a 64-year-old man with diffuse, bilateral pulmonary nodules and ground glass opacities associated with chronic inhalation of cosmetic talc. Transbronchial biopsy showed peribronchiolar foreign-body granulomas. After cessation of talc exposure, the patient demonstrated clinical and radiographic improvement without the use of corticosteroids. This case demonstrates that a conservative approach with cessation of exposure alone, without the use of corticosteroids, can be an effective therapy in cosmetic talc-related pulmonary granulomatosis.

20.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1061-1062: 17-25, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28697414

ABSTRACT

Breath analysis has been gaining popularity as a non-invasive technique that is amenable to a broad range of medical uses. One of the persistent problems hampering the wide application of the breath analysis method is measurement variability of metabolite abundances stemming from differences in both sampling and analysis methodologies used in various studies. Mass spectrometry has been a method of choice for comprehensive metabolomic analysis. For the first time in the present study, we juxtapose the most commonly employed mass spectrometry-based analysis methodologies and directly compare the resultant coverages of detected compounds in exhaled breath condensate in order to guide methodology choices for exhaled breath condensate analysis studies. Four methods were explored to broaden the range of measured compounds across both the volatile and non-volatile domain. Liquid phase sampling with polyacrylate Solid-Phase MicroExtraction fiber, liquid phase extraction with a polydimethylsiloxane patch, and headspace sampling using Carboxen/Polydimethylsiloxane Solid-Phase MicroExtraction (SPME) followed by gas chromatography mass spectrometry were tested for the analysis of volatile fraction. Hydrophilic interaction liquid chromatography and reversed-phase chromatography high performance liquid chromatography mass spectrometry were used for analysis of non-volatile fraction. We found that liquid phase breath condensate extraction was notably superior compared to headspace extraction and differences in employed sorbents manifested altered metabolite coverages. The most pronounced effect was substantially enhanced metabolite capture for larger, higher-boiling compounds using polyacrylate SPME liquid phase sampling. The analysis of the non-volatile fraction of breath condensate by hydrophilic and reverse phase high performance liquid chromatography mass spectrometry indicated orthogonal metabolite coverage by these chromatography modes. We found that the metabolite coverage could be enhanced significantly with the use of organic solvent as a device rinse after breath sampling to collect the non-aqueous fraction as opposed to neat breath condensate sample. Here, we show the detected ranges of compounds in each case and provide a practical guide for methodology selection for optimal detection of specific compounds.


Subject(s)
Breath Tests/methods , Chromatography, High Pressure Liquid/methods , Gas Chromatography-Mass Spectrometry/methods , Organic Chemicals/analysis , Tandem Mass Spectrometry/methods , Adult , Female , Humans , Male , Organic Chemicals/chemistry , Organic Chemicals/isolation & purification , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...