Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Bioeng ; 39(6): 688-95, 1992 Mar 15.
Article in English | MEDLINE | ID: mdl-18600999

ABSTRACT

The growth characteristics of a chemostat culture of the obligate methylotrophic bacterium Methylobacillus flagellatum have been determined. Steady-state cultures growing at a rate of 0.73-0.74 h(-1), equal to the maximal growth rate, were obtained under oxyturbidostat cultivation conditions. The response of a chemostat culture to a pulse increase of methanol concentration was studied. It was shown that slow and rapidly growing cultures of M. flagellatum responded differently to pulse methanol addition. The growth characteristics of slow-growing cultures decreased after methanol addition compared to those of stationary chemostat cultures. The growth characteristics of rapidly growing cultures were practically unchanged with and without pulse methanol addition.

2.
Antonie Van Leeuwenhoek ; 60(2): 101-7, 1991 Aug.
Article in English | MEDLINE | ID: mdl-1804027

ABSTRACT

In methanol-limited continuous cultures of the obligate methylotrophic bacterium Methylobacillus flagellatum grown at rates from 0.05 to 0.63 h-1, and also in an oxyturbidostat culture of M. flagellatum growing at the rate of 0.73 h-1, levels of methanol dehydrogenase, enzymes of formaldehyde oxidation (both linear and cyclic) and assimilation (RuMP cycle), a number of intermediary metabolism and TCA cycle enzymes and also 'dye-linked' formaldehyde dehydrogenase were determined. It was shown that the activities of dissimilatory enzymes, with the exception of 'dye-linked' formaldehyde dehydrogenase, decreased with increasing growth rate. Activities of assimilative enzymes and activities of the TCA cycle enzymes detected as well as the 'dye-linked' formaldehyde dehydrogenase activity, increased with increasing growth rate. A periplasmic location was shown for the latter enzyme and a role in formaldehyde detoxification was proposed.


Subject(s)
Aldehyde Oxidoreductases/metabolism , Methanol/metabolism , Methylococcaceae/enzymology , Cell Division , Culture Media , Cytoplasm/chemistry , Cytoplasm/enzymology , Immunoenzyme Techniques , Methylococcaceae/growth & development , Methylococcaceae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...