Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
BMC Oral Health ; 24(1): 99, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38233794

ABSTRACT

BACKGROUND: While conventional threaded implants (TI) have proven to be effective for replacing missing teeth, they have certain limitations in terms of diameter, length, and emergence profile when compared to customised root analogue implants (RAI). To further investigate the potential benefits of RAIs, the aim of this study was to experimentally evaluate the micromotion of RAIs compared to TIs. METHODS: A 3D model of tooth 47 (mandibular right second molar) was segmented from an existing cone beam computed tomography (CBCT), and a RAI was designed based on this model. Four RAI subgroups were fabricated as follows: 3D-printed titanium (PT), 3D-printed zirconia (PZ), milled titanium (MT), milled zirconia (MZ), each with a sample size of n = 5. Additionally, two TI subgroups (B11 and C11) were used as control, each with a sample size of n = 5. All samples were embedded in polyurethane foam artificial bone blocks and subjected to load application using a self-developed biomechanical Hexapod Measurement System. Micromotion was quantified by analysing the load/displacement curves. RESULTS: There were no statistically significant differences in displacement in Z-axis (the loading direction) between the RAI group and the TI group. However, within the RAI subgroups, PZ exhibited significantly higher displacement values compared to the other subgroups (p < 0.05). In terms of the overall total displacement, the RAI group showed a statistically significant higher displacement than the TI group, with mean displacement values of 96.5 µm and 55.8 µm for the RAI and TI groups, respectively. CONCLUSIONS: The RAI demonstrated promising biomechanical behaviour, with micromotion values falling within the physiological limits. However, their performance is less predictable due to varying anatomical designs.


Subject(s)
Dental Implants , Humans , Titanium , Zirconium , Software
2.
Biomed Tech (Berl) ; 67(5): 411-417, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-35786446

ABSTRACT

This paper proposes a conceptual method to calculate the pose of a stereo-vision camera relative to an artificial mandible without additional markers. The general method for marker-free navigation has four steps: 1) parallel image acquisition by a stereo-vision camera, 2) automatic identification of 2d point pairs (landmark pairs) in a left and a right image, 3) calculation of related 3d points in the joint camera coordinate system and 4) matching of 3d points generated to a preoperative 3d model (i.e., CT data based). To identify and compare landmarks in the acquired stereo images, well-known algorithms for landmark detection, description and matching were compared within the developed approach. Finally, the BRISK algorithm (Leutenegger S, Chli M, Siegwart RY. BRISK: Binary Robust invariant scalable keypoints. Proceedings of the IEEE International Conference on Computer Vision; 2011: 2548-2555) was used. The proposed method was implemented in MATLAB® and validated in vitro with one artificial mandible. The accuracy evaluation of the camera positions calculated resulted in an average deviation error of 1.45 mm ± 0.76 mm to the real camera displacement. This value was calculated using only stereo images with over 100 reconstructed landmark pairs each. This provides the basis for marker-free navigation.


Subject(s)
Surgery, Computer-Assisted , Surgical Navigation Systems , Algorithms , Imaging, Three-Dimensional/methods , Surgery, Computer-Assisted/methods
3.
JMIR Form Res ; 6(10): e29920, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-35266872

ABSTRACT

BACKGROUND: Digital technologies are transforming the health care system. A large part of information is generated as real-world data (RWD). Data from electronic health records and digital biomarkers have the potential to reveal associations between the benefits and adverse events of medicines, establish new patient-stratification principles, expose unknown disease correlations, and inform on preventive measures. The impact for health care payers and providers, the biopharmaceutical industry, and governments is massive in terms of health outcomes, quality of care, and cost. However, a framework to assess the preliminary quality of RWD is missing, thus hindering the conduct of population-based observational studies to support regulatory decision-making and real-world evidence. OBJECTIVE: To address the need to qualify RWD, we aimed to build a web application as a tool to translate characterization of some quality parameters of RWD into a metric and propose a standard framework for evaluating the quality of the RWD. METHODS: The RWD-Cockpit systematically scores data sets based on proposed quality metrics and customizable variables chosen by the user. Sleep RWD generated de novo and publicly available data sets were used to validate the usability and applicability of the web application. The RWD quality score is based on the evaluation of 7 variables: manageability specifies access and publication status; complexity defines univariate, multivariate, and longitudinal data; sample size indicates the size of the sample or samples; privacy and liability stipulates privacy rules; accessibility specifies how the data set can be accessed and to what granularity; periodicity specifies how often the data set is updated; and standardization specifies whether the data set adheres to any specific technical or metadata standard. These variables are associated with several descriptors that define specific characteristics of the data set. RESULTS: To address the need to qualify RWD, we built the RWD-Cockpit web application, which proposes a framework and applies a common standard for a preliminary evaluation of RWD quality across data sets-molecular, phenotypical, and social-and proposes a standard that can be further personalized by the community retaining an internal standard. Applied to 2 different case studies-de novo-generated sleep data and publicly available data sets-the RWD-Cockpit could identify and provide researchers with variables that might increase quality. CONCLUSIONS: The results from the application of the framework of RWD metrics implemented in the RWD-Cockpit application suggests that multiple data sets can be preliminarily evaluated in terms of quality using the proposed metrics. The output scores-quality identifiers-provide a first quality assessment for the use of RWD. Although extensive challenges remain to be addressed to set RWD quality standards, our proposal can serve as an initial blueprint for community efforts in the characterization of RWD quality for regulated settings.

4.
Med Biol Eng Comput ; 58(4): 771-784, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32002754

ABSTRACT

Deep brain stimulation (DBS) is an established therapy for movement disorders such as essential tremor (ET). Positioning of the DBS lead in the patient's brain is crucial for effective treatment. Extensive evaluations of improvement and adverse effects of stimulation at different positions for various current amplitudes are performed intraoperatively. However, to choose the optimal position of the lead, the information has to be "mentally" visualized and analyzed. This paper introduces a new technique called "stimulation maps," which summarizes and visualizes the high amount of relevant data with the aim to assist in identifying the optimal DBS lead position. It combines three methods: outlines of the relevant anatomical structures, quantitative symptom evaluation, and patient-specific electric field simulations. Through this combination, each voxel in the stimulation region is assigned one value of symptom improvement, resulting in the division of stimulation region into areas with different improvement levels. This technique was applied retrospectively to five ET patients in the University Hospital in Clermont-Ferrand, France. Apart from identifying the optimal implant position, the resultant nine maps show that the highest improvement region is frequently in the posterior subthalamic area. The results demonstrate the utility of the stimulation maps in identifying the optimal implant position. Graphical abstract.


Subject(s)
Deep Brain Stimulation/methods , Surgery, Computer-Assisted/methods , Tremor/surgery , Accelerometry , Brain/diagnostic imaging , Brain/surgery , Data Visualization , Deep Brain Stimulation/adverse effects , Humans , Image Processing, Computer-Assisted , Microelectrodes , Monitoring, Intraoperative , Precision Medicine , Tremor/diagnostic imaging
5.
J Neurosurg ; 127(3): 602-612, 2017 Sep.
Article in English | MEDLINE | ID: mdl-27982769

ABSTRACT

OBJECTIVE Despite the widespread use of deep brain stimulation (DBS) for movement disorders such as Parkinson's disease (PD), the exact anatomical target responsible for the therapeutic effect is still a subject of research. Intraoperative stimulation tests by experts consist of performing passive movements of the patient's arm or wrist while the amplitude of the stimulation current is increased. At each position, the amplitude that best alleviates rigidity is identified. Intrarater and interrater variations due to the subjective and semiquantitative nature of such evaluations have been reported. The aim of the present study was to evaluate the use of an acceleration sensor attached to the evaluator's wrist to assess the change in rigidity, hypothesizing that such a change will alter the speed of the passive movements. Furthermore, the combined analysis of such quantitative results with anatomy would generate a more reproducible description of the most effective stimulation sites. METHODS To test the reliability of the method, it was applied during postoperative follow-up examinations of 3 patients. To study the feasibility of intraoperative use, it was used during 9 bilateral DBS operations in patients suffering from PD. Changes in rigidity were calculated by extracting relevant outcome measures from the accelerometer data. These values were used to identify rigidity-suppressing stimulation current amplitudes, which were statistically compared with the amplitudes identified by the neurologist. Positions for the chronic DBS lead implantation that would have been chosen based on the acceleration data were compared with clinical choices. The data were also analyzed with respect to the anatomical location of the stimulating electrode. RESULTS Outcome measures extracted from the accelerometer data were reproducible for the same evaluator, thus providing a reliable assessment of rigidity changes during intraoperative stimulation tests. Of the 188 stimulation sites analyzed, the number of sites where rigidity-suppressing amplitudes were found increased from 144 to 170 when the accelerometer evaluations were considered. In general, rigidity release could be observed at significantly lower amplitudes with accelerometer evaluation (mean 0.9 ± 0.6 mA) than with subjective evaluation (mean 1.4 ± 0.6 mA) (p < 0.001). Of 14 choices for the implant location of the DBS lead, only 2 were the same for acceleration-based and subjective evaluations. The comparison across anatomical locations showed that stimulation in the fields of Forel ameliorates rigidity at similar amplitudes as stimulation in the subthalamic nucleus, but with fewer side effects. CONCLUSIONS This article describes and validates a new assistive method for assessing rigidity with acceleration sensors during intraoperative stimulation tests in DBS procedures. The initial results indicate that the proposed method may be a clinically useful aid for optimal DBS lead placement as well as a new tool in the ongoing scientific search for the optimal DBS target for PD.


Subject(s)
Deep Brain Stimulation/methods , Parkinson Disease/therapy , Aged , Deep Brain Stimulation/instrumentation , Electrodes , Humans , Middle Aged , Movement , Muscle Rigidity , Neurosurgical Procedures/methods , Parkinson Disease/physiopathology
6.
Med Biol Eng Comput ; 55(5): 845-858, 2017 May.
Article in English | MEDLINE | ID: mdl-27631560

ABSTRACT

Deep brain stimulation (DBS) surgery is extensively used in the treatment of movement disorders. Nevertheless, methods to evaluate the clinical response during intraoperative stimulation tests to identify the optimal position for the implantation of the chronic DBS lead remain subjective. In this paper, we describe a new, versatile method for quantitative intraoperative evaluation of improvement in tremor with an acceleration sensor that is mounted on the patient's wrist during surgery. At each anatomical test position, the improvement in tremor compared to the initial tremor is estimated on the basis of extracted outcome measures. This method was tested on 15 tremor patients undergoing DBS surgery in two centers. Data from 359 stimulation tests were acquired. Our results suggest that accelerometric evaluation detects tremor changes more sensitively than subjective visual ratings. The effective stimulation current amplitudes identified from the quantitative data (1.1 ± 0.8 mA) are lower than those identified by visual evaluation (1.7 ± 0.8 mA) for similar improvement in tremor. Additionally, if these data had been used to choose the chronic implant position of the DBS lead, 15 of the 26 choices would have been different. These results show that our method of accelerometric evaluation can potentially improve DBS targeting.


Subject(s)
Brain/surgery , Neurosurgical Procedures/methods , Tremor/surgery , Acceleration , Deep Brain Stimulation/methods , Electrodes, Implanted , Humans , Movement Disorders/surgery
7.
Biomed Tech (Berl) ; 61(4): 381-2, 2016 Aug 01.
Article in English | MEDLINE | ID: mdl-27447202
9.
Tissue Eng Part A ; 19(23-24): 2645-54, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23895118

ABSTRACT

The treatment of large bone defects still poses a major challenge in orthopaedic and cranio-maxillofacial surgery. One possible solution could be the development of personalized porous titanium-based implants that are designed to meet all mechanical needs with a minimum amount of titanium and maximum osteopromotive properties so that it could be combined with growth factor-loaded hydrogels or cell constructs to realize advanced bone tissue engineering strategies. Such implants could prove useful for mandibular reconstruction, spinal fusion, the treatment of extended long bone defects, or to fill in gaps created on autograft harvesting. The aim of this study was to determine the mechanical properties and potential of bone formation of light weight implants generated by selective laser melting (SLM). We mainly focused on osteoconduction, as this is a key feature in bone healing and could serve as a back-up for osteoinduction and cell transplantation strategies. To that end, defined implants were produced by SLM, and their surfaces were left untreated, sandblasted, or sandblasted/acid etched. In vivo bone formation with the different implants was tested throughout calvarial defects in rabbits and compared with untreated defects. Analysis by micro computed tomography (µCT) and histomorphometry revealed that all generatively produced porous Ti structures were well osseointegrated into the surrounding bone. The histomorphometric analysis revealed that bone formation was significantly increased in all implant-treated groups compared with untreated defects and significantly increased in sand blasted implants compared with untreated ones. Bone bridging was significantly increased in sand blasted acid-etched scaffolds. Therefore, scaffolds manufactured by SLM should be surface treated. Bone augmentation beyond the original bone margins was only seen in implant-treated defects, indicating an osteoconductive potential of the implants that could be utilized clinically for bone augmentation purposes. Therefore, designed porous, lightweight structures have potential for bone regeneration and augmentation purposes, especially when complex and patient-specific geometries are essential.


Subject(s)
Bone Regeneration , Bone Substitutes/chemistry , Lasers , Titanium/chemistry , X-Ray Microtomography , Animals , Porosity , Rabbits
10.
Comput Aided Surg ; 12(3): 160-7, 2007 May.
Article in English | MEDLINE | ID: mdl-17538788

ABSTRACT

Metal-on-metal hip resurfacing arthroplasties represent an alternative to total hip arthroplasties for young and active patients, enabling the preservation of intact femoral bone and therefore improving the prognosis for future hip joint replacements. Follow-up studies have shown that the main reasons for early implant failure are mal-orientation of the implant stem in relation to the femoral neck axis, and notching of the femoral neck during femoral head preparation, as well as by exposed cancellous bone after implantation. A computer-assisted planning and navigation system for the implantation of femoral hip resurfacing implants has been developed which supports the surgeon during intraoperative fluoroscopy-based planning and navigation of implant positioning. This paper presents the results of a cadaver study performed to evaluate the system's functionality and accuracy.


Subject(s)
Arthroplasty, Replacement, Hip/instrumentation , Femur Head/surgery , Fluoroscopy/instrumentation , Image Processing, Computer-Assisted/instrumentation , Imaging, Three-Dimensional/instrumentation , Surgery, Computer-Assisted/instrumentation , Calibration , Feasibility Studies , Femur Head/diagnostic imaging , Humans , Prosthesis Design , Prosthesis Fitting , Software , User-Computer Interface
12.
IEEE Trans Biomed Eng ; 52(4): 664-75, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15825868

ABSTRACT

In revision total hip replacement the removal of the distal femoral bone cement can be a time consuming and risky operation due to the difficulty in determining the three-dimensional (3-D) boundary of the cement. We present a new approach to reconstruct the bone cement volume by using just a small number of calibrated multiplanar X-ray images. The modular system design allows the surgeon to react intraoperatively to problems arising during the individual situation. When encountering problems during conventional cement removal, the system can be used on demand to acquire a few calibrated X-ray images. After a semi-automatic segmentation and 3-D reconstruction of the cement with a deformable model, the system guides the surgeon through a free-hand navigated or robot-assisted cement removal. The experimental evaluation using plastic test implants cemented into anatomic specimen of human femoral bone has shown the potential of this method with a maximal error of 1.2 mm (0.5 mm RMS) for the distal cement based on just 4-5 multiplanar X-ray images. A first test of the complete system, comparing the 3-D-reconstruction with a computed tompgraphy data set, confirmed these results with a mean error about 1 mm.


Subject(s)
Arthroplasty, Replacement, Hip/methods , Bone Cements , Debridement/methods , Femur/diagnostic imaging , Femur/surgery , Imaging, Three-Dimensional/methods , Surgery, Computer-Assisted/methods , Cementation/methods , Device Removal/methods , Fluoroscopy/instrumentation , Fluoroscopy/methods , Intraoperative Care/methods , Phantoms, Imaging , Radiographic Image Interpretation, Computer-Assisted/methods , Reoperation/methods , Robotics/methods , Treatment Outcome
13.
Comput Aided Surg ; 10(5-6): 345-50, 2005.
Article in English | MEDLINE | ID: mdl-16410237

ABSTRACT

Automated methods are presented for the planning of correction osteotomies and osteosynthesis on lower extremities. Intraoperative calibrated X-ray images and kinematic measurements using optical tracking systems are the basis for the identification of the individual anatomy of the patient. The correction input of the surgeon, together with optimization algorithms, allows the calculation of the position and orientation of the osteotomies and the repositioning of the bone fragments. A navigation module supports the surgeon during the execution of osteotomies and repositioning, as well as osteosynthesis. So far, the approach has been evaluated in laboratory trials and ex vivo tests.


Subject(s)
Leg Bones/surgery , Osteotomy/methods , Surgery, Computer-Assisted , Cadaver , Humans , Leg Bones/diagnostic imaging , Models, Anatomic , Radiography
14.
Biomed Tech (Berl) ; 47 Suppl 1 Pt 1: 41-3, 2002.
Article in German | MEDLINE | ID: mdl-12451767

ABSTRACT

During x-ray based navigation a number of errors causes distortions in the output image. These errors lead to a fail position of the surgical instrument relative to the patients anatomy. To minimize these influences and to develop dewarping techniques an exact error source identification is necessary. This paper examines the mechanical shift of the x-ray source relative to the image intensifier. Therefore three measurement methods will be used: an optical tracking system, a x-ray opaque probe and the integrated laser cross of the C-arm. The results of this examination show a notable shift of the C-arm geometry. However, no hysteresis effects could be found.


Subject(s)
Artifacts , Radiography/instrumentation , Surgery, Computer-Assisted/instrumentation , Algorithms , Biomechanical Phenomena , Equipment Design , Humans , Image Processing, Computer-Assisted/instrumentation , Lasers , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...