Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 946: 174280, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38942311

ABSTRACT

Virus spillovers from managed honey bees, Apis mellifera, are thought to contribute to the decline of wild pollinators, including bumble bees. However, data on the impact of such viruses on wild pollinators remain scarce, and the influence of landscape structure on virus dynamics is poorly understood. In this study, we deployed bumble bee colonies in an agricultural landscape and studied changes in the bumble bee virome during field placement under varying habitat composition and configuration using a multiscale analytical framework. We estimated prevalence of viruses and viral loads (i.e. number of viral genomic equivalent copies) in bumble bees before and after placing them in the field using next generation sequencing and quantitative PCR. The results show that viral loads and number of different viruses present increased during placement in the field and that the virus composition of the colonies shifted from an initial dominance of honey bee associated viruses to a higher number (in both viral loads and number of viruses present) of bumble bee associated viruses. Especially DWV-B, typical for honey bees, drastically decreased after the time in the field. Viral loads prior to placing colonies in the field showed no effect on colony development, suggesting low impacts of these viruses in field settings. Notably, we further demonstrate that increased habitat diversity results in a lower number of different viruses present in Bombus colonies, while colonies in areas with well-connected farmland patches decreased in their total viral load after field placement. Our results emphasize the importance of landscape heterogeneity and connectivity for wild pollinator health and that these influences predominate at fine spatial scales.

2.
PLoS One ; 18(3): e0282353, 2023.
Article in English | MEDLINE | ID: mdl-36857367

ABSTRACT

Interspecies transmission of RNA viruses is a major concern for human and animal health. However, host-range, transmission routes and especially the possible impact of these viruses on alternative hosts are often poorly understood. Here, we investigated the role of the labyrinth spider, Agelena labyrinthica, as a potential alternative host of viruses commonly known from western honey bees, Apis mellifera. Field-collected spiders were screened for Acute bee paralysis virus (ABPV), Black queen cell virus, Chronic bee paralysis virus, Deformed wing virus type A and B (DWV-B), Israeli acute paralysis virus, Lake Sinai virus and Sacbrood virus. In a laboratory experiment, labyrinth spiders were fed with ABPV and DWV-B infected honey bees or virus free control food. Our results show that natural infections of A. labyrinthica with these viruses are common in the field, as 62.5% of the samples were positive for at least one virus, supporting their wide host range. For DWV-B, the laboratory data indicate that foodborne transmission occurs and that high virus titres may reduce cocoon building, which would be the first report of clinical symptoms of DWV in Araneae. Since cocoons are tokens of fitness, virus transmission from honey bees might affect spider populations, which would constitute a concern for nature conservation.


Subject(s)
Ear, Inner , Spiders , Humans , Bees , Animals , Food
3.
Sci Rep ; 11(1): 20500, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34654848

ABSTRACT

Pesticides and pathogens are known drivers of declines in global entomofauna. However, interactions between pesticides and viruses, which could range from antagonistic, over additive to synergistic, are poorly understood in ants. Here, we show that in ants the impact of single and combined pesticide and virus stressors can vary across castes and at the colony level. A fully-crossed laboratory assay was used to evaluate interactions between a sublethal dose of the neonicotinoid thiamethoxam and Acute bee paralysis virus (ABPV) in black garden ants, Lasius niger. After monitoring colonies over 64 weeks, body mass, neonicotinoid residues and virus titres of workers and queens, as well as worker behavioural activity were measured. ABPV, but not thiamethoxam, reduced activity of workers. Neonicotinoid exposure resulted in reduced body mass of workers, but not of queens. Further, thiamethoxam facilitated ABPV infections in queens, but not in workers. Overall, virus exposure did not compromise detoxification and body mass, but one colony showed high virus titres and worker mortality. Although the data suggest additive effects at the level of individuals and castes, co-exposure with both stressors elicited antagonistic effects on colony size. Our results create demand for long-term holistic risk assessment of individual stressors and their interactions to protect biodiversity.


Subject(s)
Ants/drug effects , Dicistroviridae , Host-Pathogen Interactions/drug effects , Insecticides/toxicity , Neonicotinoids/toxicity , Animals , Ants/virology , Behavior, Animal/drug effects , Insecticides/analysis , Neonicotinoids/analysis , Pesticide Residues/analysis
4.
Commun Biol ; 3(1): 335, 2020 06 26.
Article in English | MEDLINE | ID: mdl-32591582

ABSTRACT

The widespread prophylactic usage of neonicotinoid insecticides has a clear impact on non-target organisms. However, the possible effects of long-term exposure on soil-dwelling organisms are still poorly understood especially for social insects with long-living queens. Here, we show that effects of chronic exposure to the neonicotinoid thiamethoxam on black garden ant colonies, Lasius niger, become visible before the second overwintering. Queens and workers differed in the residue-ratio of thiamethoxam to its metabolite clothianidin, suggesting that queens may have a superior detoxification system. Even though thiamethoxam did not affect queen mortality, neonicotinoid-exposed colonies showed a reduced number of workers and larvae indicating a trade-off between detoxification and fertility. Since colony size is a key for fitness, our data suggest long-term impacts of neonicotinoids on these organisms. This should be accounted for in future environmental and ecological risk assessments of neonicotinoid applications to prevent irreparable damages to ecosystems.


Subject(s)
Ants/drug effects , Insecticides/pharmacology , Neonicotinoids/pharmacology , Animals , Environmental Exposure/adverse effects , Guanidines/adverse effects , Insecticides/administration & dosage , Larva/drug effects , Neonicotinoids/administration & dosage , Neonicotinoids/adverse effects , Ovum/drug effects , Pesticide Residues/adverse effects , Population Dynamics , Pupa/drug effects , Thiamethoxam/adverse effects , Thiazoles/adverse effects
5.
Viruses ; 12(3)2020 03 17.
Article in English | MEDLINE | ID: mdl-32192027

ABSTRACT

Emerging infectious diseases are often the products of host shifts, where a pathogen jumps from its original host to a novel species. Viruses in particular cross species barriers frequently. Acute bee paralysis virus (ABPV) and deformed wing virus (DWV) are viruses described in honey bees (Apis mellifera) with broad host ranges. Ants scavenging on dead honey bees may get infected with these viruses via foodborne transmission. However, the role of black garden ants, Lasius niger and Lasius platythorax, as alternative hosts of ABPV and DWV is not known and potential impacts of these viruses have not been addressed yet. In a laboratory feeding experiment, we show that L. niger can carry DWV and ABPV. However, negative-sense strand RNA, a token of virus replication, was only detected for ABPV. Therefore, additional L. niger colonies were tested for clinical symptoms of ABPV infections. Symptoms were detected at colony (fewer emerging workers) and individual level (impaired locomotion and movement speed). In a field survey, all L. platythorax samples carried ABPV, DWV-A and -B, as well as the negative-sense strand RNA of ABPV. These results show that L. niger and L. platythorax are alternative hosts of ABPV, possibly acting as a biological vector of ABPV and as a mechanical one for DWV. This is the first study showing the impact of honey bee viruses on ants. The common virus infections of ants in the field support possible negative consequences for ecosystem functioning due to host shifts.


Subject(s)
Ants/virology , Bees/virology , Foodborne Diseases/veterinary , Foodborne Diseases/virology , Virus Diseases/physiopathology , Virus Diseases/transmission , Animals , Dicistroviridae/genetics , Ecosystem , Insect Viruses/genetics , RNA Viruses , Virus Diseases/veterinary , Virus Replication
6.
Insects ; 10(11)2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31703426

ABSTRACT

Virus host shifts occur frequently, but the whole range of host species and the actual transmission pathways are often poorly understood. Deformed wing virus (DWV), an RNA virus described from honeybees (Apis mellifera), has been shown to have a broad host range. Since ants are often scavenging on dead honeybees, foodborne transmission of these viruses may occur. However, the role of the ant Myrmica rubra as an alternative host is not known and foodborne transmission to ants has not been experimentally addressed yet. Here, we show with a 16-week feeding experiment that foodborne transmission enables DWV type-A and -B to infect M. rubra and that these ants may serve as a virus reservoir. However, the titers of both plus- and minus-sense viral RNA strands decreased over time. Since the ants were fed with highly virus-saturated honeybee pupae, this probably resulted in initial viral peaks, then approaching lower equilibrium titers in infected individuals later. Since DWV infections were also found in untreated field-collected M. rubra colonies, our results support the wide host range of DWV and further suggest foodborne transmission as a so far underestimated spread mechanism.

SELECTION OF CITATIONS
SEARCH DETAIL
...