Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(21)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36363344

ABSTRACT

Two different types of graphene materials were used as functional nanofillers for the mechanical and tribological improvement of silicon carbide/graphene nanocomposites. On the one hand is thermally reduced graphite oxide (TRGO) reduced at three different temperatures, and on the other hand is graphene made of three different organic precursors, which were directly coated on silicon carbide (SiC) platelets (GSiC). Additionally, benchmark materials were also used as carbon fillers. The SiC/graphene nanocomposites with 2 wt% filler content were manufactured by pressureless sintering (PLS). Some composites were produced with higher graphene contents of 4% and 8% and sintered by spark plasma sintering (SPS). Microstructural analyses were conducted using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Underwater lubrication, the SP sintered TRGO and GSiC materials with high graphene content have shown the most promising tribological performance. Furthermore, the reduced size of the homogeneously distributed nanoparticles promotes the formation of surface states, which improve the friction and wear properties.

2.
Materials (Basel) ; 15(9)2022 May 02.
Article in English | MEDLINE | ID: mdl-35591604

ABSTRACT

Even though hard, low friction coatings such as diamond like carbon (DLC) would be beneficial for the performance and longevity of rubber seals, a crucial challenge remains. The elastic mismatch of rubber substrate and DLC coating prevents a fracture free coating application. In this work, a nature inspired approach is applied to render the stiff coating flexible and resilient to delamination at the same time by direct patterning. Rubber substrates were laser structured with tile patterns and subsequently DLC coated. Tensile and tribology tests were performed on structured and unstructured samples. Unstructured DLC coatings showed a crack pattern induced by the coating process, which was further fragmented by tensile stress. Coatings with tile patterns did not experience a further fragmentation under load. During continuous tribological loading, less heterogenous damage is produced for tile structured samples. The findings are ascribed to the relief of induced coating stress by the tile structure, meaning a more resilient coating.

SELECTION OF CITATIONS
SEARCH DETAIL
...