Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Pharmacol ; 57(4): 667-78, 2000 Apr.
Article in English | MEDLINE | ID: mdl-10727511

ABSTRACT

The glial glutamate transporter GLT-1 may be the predominant Na(+)-dependent glutamate transporter in forebrain. Expression of GLT-1 correlates with astrocyte maturation in vivo and increases during synaptogenesis. In astrocyte cultures, GLT-1 expression parallels differentiation induced by cAMP analogs or by coculturing with neurons. Molecule(s) secreted by neuronal cultures contribute to this induction of GLT-1, but little is known about the signaling pathways mediating this regulation. In the present study, we determined whether growth factors previously implicated in astrocyte differentiation regulate GLT-1 expression. Of the six growth factors tested, two [epidermal growth factor (EGF) and transforming growth factor-alpha] induced expression of GLT-1 protein in cultured astrocytes. Induction of GLT-1 protein was accompanied by an increase in mRNA and in the V(max) for Na(+)-dependent glutamate transport activity. The effects of dibutyryl-cAMP and EGF were additive but were independently blocked by inhibitors of protein kinase A or protein tyrosine kinases, respectively. The induction of GLT-1 in both EGF- and dibutyryl-cAMP-treated astrocytes was blocked by inhibitors targeting phosphatidylinositol 3-kinase (PI3K) or the nuclear transcription factor-kappaB. Furthermore, transient transfection of astrocyte cultures with a constitutively active PI3K construct was sufficient to induce expression of GLT-1. These data suggest that independent but converging pathways mediate expression of GLT-1. Although an EGF receptor-specific antagonist did not block the effects of neuron-conditioned medium, the induction of GLT-1 by neuron-conditioned medium was completely abolished by inhibition of PI3K or nuclear factor-kappaB. EGF also increased expression of GLT-1 in spinal cord organotypic cultures. Together, these data suggest that activation of specific signaling pathways with EGF-like molecules may provide a novel approach for limiting excitotoxic brain injury.


Subject(s)
ATP-Binding Cassette Transporters/biosynthesis , Astrocytes/metabolism , ErbB Receptors/agonists , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Amino Acid Transport System X-AG , Animals , Bucladesine/metabolism , Cells, Cultured , Culture Media, Conditioned/metabolism , Epidermal Growth Factor/metabolism , ErbB Receptors/metabolism , RNA, Messenger/metabolism , Rats , Signal Transduction , Sodium/metabolism , Spinal Cord/metabolism , Transfection , Transforming Growth Factor alpha/metabolism , Tritium
2.
Mol Pharmacol ; 53(3): 355-69, 1998 Mar.
Article in English | MEDLINE | ID: mdl-9495799

ABSTRACT

Sodium-dependent transport into astrocytes is critical for maintaining the extracellular concentrations of glutamate below toxic levels in the central nervous system. In this study, the expression of the glial glutamate transporters GLT-1 and GLAST was studied in primary cultures derived from cortical tissue. In primary astrocytes, GLAST protein levels were approximately one half of those observed in cortical tissue, but GLT-1 protein was present at very low levels compared with cortical tissue. Maintenance of these astrocytes in medium supplemented with dibutyryl-cAMP (dbcAMP) caused a dramatic change in cell morphology, increased GLT-1 and GLAST mRNA levels approximately 5-fold, increased GLAST protein approximately 2-fold, and increased GLT-1 protein >/=8-20-fold. These increases in protein expression were accompanied by 2-fold increases in the Vmax and Km values for Na+-dependent L-[3H]glutamate transport activity. Although GLT-1 is sensitive to inhibition by dihydrokainate in heterologous expression systems, no dihydrokainate sensitivity was observed in astrocyte cultures that expressed GLT-1. Biotinylation with a membrane-impermeant reagent, separation of the biotinylated/cell surface proteins, and subsequent Western blotting demonstrated that both GLT-1 and GLAST were present at the cell surface. Coculturing of astrocytes with neurons also induced expression of GLT-1, which colocalized with the glial specific marker, glial fibrillary acidic protein. Neurons induced a small increase in GLAST protein. Several studies were performed to examine the mechanism by which neurons regulate expression of the glial transporters. Three different protein kinase A (PKA) antagonists did not block the effect of neurons on glial expression of GLT-1 protein, but the addition of dbcAMP to mixed cultures of neurons and astrocytes did not cause GLT-1 protein to increase further. This suggests that neurons do not regulate GLT-1 by activation of PKA but that neurons and dbcAMP regulate GLT-1 protein through convergent pathways. As was observed with GLT-1, the increases in GLAST protein observed in cocultures were not blocked by PKA antagonists, but unlike GLT-1, the addition of dbcAMP to mixed cultures of neurons and astrocytes caused GLAST protein to increase approximately 2-fold. Neurons separated from astrocytes with a semipermeable membrane increased GLT-1 protein, indicating that the effect of neurons was mediated by a diffusible molecule. Treatment of cocultures with high concentrations of either N-methyl-D-aspartate or glutamate killed the neurons, caused GLT-1 protein to decrease, and caused GLAST protein to increase. These studies suggest that GLT-1 and GLAST protein are regulated independently in astrocyte cultures and that a diffusible molecule secreted by neurons induces expression of GLT-1 in astrocytes.


Subject(s)
ATP-Binding Cassette Transporters/analysis , Cyclic AMP/physiology , Neuroglia/chemistry , Neurons/physiology , Sodium/physiology , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Amino Acid Transport System X-AG , Animals , Cells, Cultured , Glutamic Acid/metabolism , Immunohistochemistry , Molecular Weight , RNA, Messenger/analysis , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...