Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
J Virol ; 96(21): e0082722, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36250708

ABSTRACT

The lack of a human immunodeficiency virus (HIV) cure has heightened interest in immunotherapy. As such, type I interferons (IFNs), in particular, IFN alpha (IFN-α), have gained renewed attention. However, HIV pathogenesis is driven by sustained IFN-mediated immune activation, and the use of IFNs is rather controversial. The following questions therein remain: (i) which IFN-α subtype to use, (ii) at which regimen, and (iii) at what time point in HIV infection it might be beneficial. Here, we used IFN-α14 modified by PASylation for its long half-life in vivo to eventually treat HIV infection. We defined the IFN dosing regimen based on the maximum increase in interferon-stimulated gene (ISG) expression 6 h after its administration and a return to baseline of ubiquitin-specific protease 18 (USP18) prior to the next dose. Notably, USP18 is the major negative regulator of type I IFN signaling. HIV infection resulted in increased ISG expression levels in humanized mice. Intriguingly, high baseline ISG levels correlated with lower HIV load. No effect was observed on HIV replication when PASylated IFN-α14 was administered in the chronic phase. However, combined antiretroviral therapy (cART) restored responsiveness to IFN, and PASylated IFN-α14 administered during analytical cART interruption resulted in a transiently lower HIV burden than in the mock-treated mice. In conclusion, cART-mediated HIV suppression restored transient IFN responsiveness and provided a potential window for immunoenhancing therapies in the context of analytical cART interruption. IMPORTANCE cART is highly efficient in suppressing HIV replication in HIV-infected patients and has resulted in a dramatic reduction in morbidity and mortality in HIV-infected people, yet it does not cure HIV infection. In addition, cART has several disadvantages. Thus, the HIV research community is exploring novel ways to control HIV infection for longer periods without cART. Here, we explored novel, long-acting IFN-α14 for its efficacy to control HIV replication in HIV-infected humanized mice. We found that IFN-α14 had no effect on chronic HIV infection. However, when mice were treated first with cART, we observed a transiently restored responsiveness to INF and a transiently lower HIV burden after stopping cART. These data emphasize (i) the value of cART-mediated HIV suppression and immune reconstitution in creating a window of opportunity for exploring novel immunotherapies, (ii) the potential of IFNs for constraining HIV, and (iii) the value of humanized mice for exploring novel immunotherapies.


Subject(s)
HIV Infections , Interferon Type I , Humans , Mice , Animals , Virus Replication , Interferon-alpha , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Interferon Type I/metabolism , Ubiquitin Thiolesterase
2.
Sci Rep ; 12(1): 18269, 2022 10 30.
Article in English | MEDLINE | ID: mdl-36310334

ABSTRACT

Cryo-EM structure determination of relatively small and flexible membrane proteins at high resolution is challenging. Increasing the size and structural features by binding of high affinity proteins to the biomolecular target allows for better particle alignment and may result in structural models of higher resolution and quality. Anticalins are alternative binding proteins to antibodies, which are based on the lipocalin scaffold and show potential for theranostic applications. The human heterodimeric amino acid transporter 4F2hc-LAT2 is a membrane protein complex that mediates transport of certain amino acids and derivatives thereof across the plasma membrane. Here, we present and discuss the cryo-EM structure of human 4F2hc-LAT2 in complex with the anticalin D11vs at 3.2 Å resolution. Relative high local map resolution (2.8-3.0 Å) in the LAT2 substrate binding site together with molecular dynamics simulations indicated the presence of fixed water molecules potentially involved in shaping and stabilizing this region. Finally, the presented work expands the application portfolio of anticalins and widens the toolset of binding proteins to promote high-resolution structure solution by single-particle cryo-EM.


Subject(s)
Amino Acid Transport Systems , Carrier Proteins , Humans , Carrier Proteins/metabolism , Cryoelectron Microscopy , Amino Acid Transport Systems/metabolism , Amino Acids/metabolism , Protein Domains
3.
Cancers (Basel) ; 13(15)2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34359606

ABSTRACT

In contrast to normal cells, tumor cells of multiple entities overexpress the Heat shock protein 70 (Hsp70) not only in the cytosol, but also present it on their plasma membrane in a tumor-specific manner. Furthermore, membrane Hsp70-positive tumor cells actively release Hsp70 in small extracellular vesicles with biophysical characteristics of exosomes. Due to conformational changes of Hsp70 in a lipid environment, most commercially available antibodies fail to detect membrane-bound and vesicular Hsp70. To fill this gap and to assess the role of vesicular Hsp70 in circulation as a potential tumor biomarker, we established the novel complete (comp)Hsp70 sandwich ELISA, using two monoclonal antibodies (mAbs), that is able to recognize both free and lipid-associated Hsp70 on the cell surface of viable tumor cells and on small extracellular vesicles. The epitopes of the mAbs cmHsp70.1 (aa 451-461) and cmHsp70.2 (aa 614-623) that are conserved among different species reside in the substrate-binding domain of Hsp70 with measured affinities of 0.42 nM and 0.44 nM, respectively. Validation of the compHsp70 ELISA revealed a high intra- and inter-assay precision, linearity in a concentration range of 1.56 to 25 ng/mL, high recovery rates of spiked liposomal Hsp70 (>84%), comparable values between human serum and plasma samples and no interference by food intake or age of the donors. Hsp70 concentrations in the circulation of patients with glioblastoma, squamous cell or adeno non-small cell lung carcinoma (NSCLC) at diagnosis were significantly higher than those of healthy donors. Hsp70 concentrations dropped concomitantly with a decrease in viable tumor mass upon irradiation of patients with approximately 20 Gy (range 18-22.5 Gy) and after completion of radiotherapy (60-70 Gy). In summary, the compHsp70 ELISA presented herein provides a sensitive and reliable tool for measuring free and vesicular Hsp70 in liquid biopsies of tumor patients, levels of which can be used as a tumor-specific biomarker, for risk assessment (i.e., differentiation of grade III vs. IV adeno NSCLC) and monitoring of therapeutic outcomes.

4.
Nucl Med Mol Imaging ; 54(2): 114-119, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32377263

ABSTRACT

PURPOSE: PASylation® offers the ability to systematically tune and optimize the pharmacokinetics of protein tracers for molecular imaging. Here we report the first clinical translation of a PASylated Fab fragment (89Zr∙Df-HER2-Fab-PAS200) for the molecular imaging of tumor-related HER2 expression. METHODS: A patient with HER2-positive metastatic breast cancer received 37 MBq of 89Zr∙Df-HER2-Fab-PAS200 at a total mass dose of 70 µg. PET/CT was carried out 6, 24, and 45 h after injection, followed by image analysis of biodistribution, normal organ uptake, and lesion targeting. RESULTS: Images show a biodistribution typical for protein tracers, characterized by a prominent blood pool 6 h p.i., which decreased over time. Lesions were detectable as early as 24 h p.i. 89Zr∙Df-HER2-Fab-PAS200 was tolerated well. CONCLUSION: This study demonstrates that a PASylated Fab tracer shows appropriate blood clearance to allow sensitive visualization of small tumor lesions in a clinical setting.

5.
J Biol Chem ; 295(3): 868-882, 2020 01 17.
Article in English | MEDLINE | ID: mdl-31819009

ABSTRACT

Interleukin-1 (IL-1) is a key mediator of inflammation and immunity. Naturally-occurring IL-1 receptor antagonist (IL-1Ra) binds and blocks the IL-1 receptor-1 (IL-1R1), preventing signaling. Anakinra, a recombinant form of IL-1Ra, is used to treat a spectrum of inflammatory diseases. However, anakinra is rapidly cleared from the body and requires daily administration. To create a longer-lasting alternative, PASylated IL-1Ra (PAS-IL-1Ra) has been generated by in-frame fusion of a long, defined-length, N-terminal Pro/Ala/Ser (PAS) random-coil polypeptide with IL-1Ra. Here, we compared the efficacy of two PAS-IL-1Ra molecules, PAS600-IL-1Ra and PAS800-IL-1Ra (carrying 600 and 800 PAS residues, respectively), with that of anakinra in mice. PAS600-IL-1Ra displayed markedly extended blood plasma levels 3 days post-administration, whereas anakinra was undetectable after 24 h. We also studied PAS600-IL-1Ra and PAS800-IL-1Ra for efficacy in monosodium urate (MSU) crystal-induced peritonitis. 5 days post-administration, PAS800-IL-1Ra significantly reduced leukocyte influx and inflammatory markers in MSU-induced peritonitis, whereas equimolar anakinra administered 24 h before MSU challenge was ineffective. The 6-h pretreatment with equimolar anakinra or PAS800-IL-1Ra before MSU challenge similarly reduced inflammatory markers. In cultured A549 lung carcinoma cells, anakinra, PAS600-IL-1Ra, and PAS800-IL-Ra reduced IL-1α-induced IL-6 and IL-8 levels with comparable potency. In human peripheral blood mononuclear cells, these molecules suppressed Candida albicans-induced production of the cancer-promoting cytokine IL-22. Surface plasmon resonance analyses revealed significant binding between PAS-IL-1Ra and IL-1R1, although with a slightly lower affinity than anakinra. These results validate PAS-IL-1Ra as an active IL-1 antagonist with marked in vivo potency and a significantly extended half-life compared with anakinra.


Subject(s)
Interleukin 1 Receptor Antagonist Protein/genetics , Interleukin-1/genetics , Peritonitis/genetics , Uric Acid/chemistry , Animals , Biomarkers/chemistry , Humans , Inflammation/chemically induced , Inflammation/genetics , Inflammation/pathology , Interleukin 1 Receptor Antagonist Protein/chemistry , Interleukin-1/chemistry , Leukocytes/chemistry , Leukocytes/drug effects , Mice , Peritonitis/chemically induced , Peritonitis/pathology , Uric Acid/toxicity
6.
Antiviral Res ; 161: 134-143, 2019 01.
Article in English | MEDLINE | ID: mdl-30439382

ABSTRACT

Interferon α (IFNα) so far is the only therapeutic option for chronic hepatitis B virus (HBV) infection that can lead to virus clearance. Unfortunately, its application is limited by side effects and response rates are low. The aim of this study was to generate a novel long-acting IFNα with the help of PASylation technology that adds a polypeptide comprising Proline, Alanine and Serine (PAS) to increase plasma half-life. Following evaluation of four selected recombinant murine IFNα (mIFNα) subtypes in cell culture, the most active subtype, mIFNα11, was fused with a 600 amino acid PAS chain. The activity of PAS-mIFNα was assessed by interferon bioassay and further evaluated for induction of interferon-stimulated genes (ISG) and antiviral efficacy in cell culture as well as in HBV-transgenic mice. PAS-mIFNα induced expression of ISG comparable to unmodified mIFNα and, likewise, evoked dose-dependent reduction of HBV replication in vitro. In vivo, PAS-mIFNα led to pronounced suppression of HBV replication without detectable liver damage whereas conventional mIFNα treatment only had a modest antiviral effect. Importantly, all PAS-mIFNα treated mice showed an anti-HBs antibody response, lost HBsAg and achieved seroconversion after three weeks. PASylated IFNα showed a profoundly increased antiviral effect in vivo compared to the non-modified version without toxicity, providing proof-of-concept that an improved IFNα can achieve higher rates of HBV antiviral and immune control.


Subject(s)
Antiviral Agents/therapeutic use , Hepatitis B, Chronic/drug therapy , Interferon-alpha/therapeutic use , Seroconversion , Virus Replication/drug effects , Animals , Half-Life , Hepatitis B Antibodies/blood , Hepatitis B virus/drug effects , Hepatitis B virus/physiology , Interferon-alpha/blood , Mice , Mice, Transgenic , Peptides/therapeutic use , Proof of Concept Study
7.
Int J Radiat Oncol Biol Phys ; 103(4): 970-976, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30503785

ABSTRACT

PURPOSE: Type I interferon (IFN-I) and interleukin (IL)-22 modulate regeneration of the thymus and intestinal epithelial cells (IECs) after cytotoxic stress such as irradiation. Radiation-induced damage to thymic tissues and IECs is a crucial aspect during the pathogenesis of inadequate immune reconstitution and acute graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT) with myeloablative total body irradiation (TBI), respectively. IL-22 and IFN-I reduce the severity of acute GVHD after allo-HSCT with myeloablative TBI. However, the role of biologically related type III interferon (IFN-III), also known as interferon lambda (IFN-λ) or IL-28, in this context is unclear. We therefore studied the role of the IFN-III pathway in thymic regeneration and GVHD after TBI and allo-HSCT. METHODS AND MATERIALS: Cohoused wild-type (WT) and IFN-III receptor-deficient (IL-28 receptor alpha subunit-deficient/IL-28Ra-/-) mice were analyzed in models of TBI-induced thymus damage and a model of GVHD after allo-HSCT with myeloablative TBI. PASylated IFN-III (PASylated IL-28A, XL-protein GmbH) was generated to prolong the plasma half-life of IFN-III. Pharmacologic activity and the effects of PASylated IL-28A on radiation-induced thymus damage and the course of GVHD after allo-HSCT with myeloablative TBI were tested. RESULTS: The course and severity of GVHD after myeloablative TBI and allo-HSCT in IL-28Ra-/- mice was comparable to those in WT mice. Activation of the IFN-III pathway by PASylated IL-28A did not significantly modulate GVHD after allo-HSCT with TBI. Furthermore, IL28Ra-/- mice and WT mice showed similar thymus regeneration after radiation, which could also not be significantly modulated by IFN-III receptor engagement using PASylated IL-28A. CONCLUSIONS: We analyzed the role of IFN-III signaling during radiation-mediated acute tissue injury. Despite molecular and biologic homologies with IFN-I and IL-22, IFN-III signaling did not improve thymus regeneration after radiation or the course of GVHD after myeloablative TBI and allo-HSCT.


Subject(s)
Hematopoietic Stem Cell Transplantation/adverse effects , Interferons/metabolism , Regeneration/radiation effects , Signal Transduction/radiation effects , Thymus Gland/injuries , Thymus Gland/radiation effects , Whole-Body Irradiation/adverse effects , Animals , Intestinal Mucosa/pathology , Intestinal Mucosa/radiation effects , Intestines/cytology , Mice , Thymus Gland/pathology , Thymus Gland/physiopathology , Interferon Lambda
8.
PLoS Pathog ; 14(8): e1007246, 2018 08.
Article in English | MEDLINE | ID: mdl-30142226

ABSTRACT

Chronic activation of the immune system in HIV infection is one of the strongest predictors of morbidity and mortality. As such, approaches that reduce immune activation have received considerable interest. Previously, we demonstrated that administration of a type I interferon receptor antagonist (IFN-1ant) during acute SIV infection of rhesus macaques results in increased virus replication and accelerated disease progression. Here, we administered a long half-life PASylated IFN-1ant to ART-treated and ART-naïve macaques during chronic SIV infection and measured expression of interferon stimulated genes (ISG) by RNA sequencing, plasma viremia, plasma cytokines, T cell activation and exhaustion as well as cell-associated virus in CD4 T cell subsets sorted from peripheral blood and lymph nodes. Our study shows that IFN-1ant administration in both ART-suppressed and ART-untreated chronically SIV-infected animals successfully results in reduction of IFN-I-mediated inflammation as defined by reduced expression of ISGs but had no effect on plasma levels of IL-1ß, IL-1ra, IL-6 and IL-8. Unlike in acute SIV infection, we observed no significant increase in plasma viremia up to 25 weeks after IFN-1ant administration or up to 15 weeks after ART interruption. Likewise, cell-associated virus measured by SIV gag DNA copies was similar between IFN-1ant and placebo groups. In addition, evaluation of T cell activation and exhaustion by surface expression of CD38, HLA-DR, Ki67, LAG-3, PD-1 and TIGIT, as well as transcriptome analysis showed no effect of IFN-I blockade. Thus, our data show that blocking IFN-I signaling during chronic SIV infection suppresses IFN-I-related inflammatory pathways without increasing virus replication, and thus may constitute a safe therapeutic intervention in chronic HIV infection.


Subject(s)
Anti-Retroviral Agents/pharmacology , Inflammation/prevention & control , Interferon Type I/antagonists & inhibitors , Simian Acquired Immunodeficiency Syndrome , T-Lymphocytes/drug effects , Virus Replication/drug effects , Animals , Anti-Retroviral Agents/therapeutic use , Chronic Disease , Inflammation/immunology , Inflammation/virology , Interferon Type I/metabolism , Lymphocyte Activation/drug effects , Macaca mulatta , Receptors, Interferon/antagonists & inhibitors , Signal Transduction/drug effects , Signal Transduction/immunology , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/drug effects , Simian Immunodeficiency Virus/immunology , Simian Immunodeficiency Virus/physiology , T-Lymphocytes/immunology
9.
Mol Metab ; 5(10): 869-881, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27689000

ABSTRACT

OBJECTIVE: A major challenge for obesity treatment is the maintenance of reduced body weight. Diet-induced obese mice are resistant to achieving normoweight once the obesogenic conditions are reversed, in part because lowered circulating leptin leads to a reduction in metabolic rate and a rebound of hyperphagia that defend the previously elevated body weight set point. Because hypothalamic POMC is a central leptin target, we investigated whether changes in circulating leptin modify Pomc expression to maintain normal energy balance in genetically predisposed obese mice. METHODS: Mice with reversible Pomc silencing in the arcuate nucleus (ArcPomc (-/-)) become morbidly obese eating low-fat chow. We measured body composition, food intake, plasma leptin, and leptin sensitivity in ArcPomc (-/-) mice weight-matched to littermate controls by calorie restriction, either from weaning or after developing obesity. Pomc was reactivated by tamoxifen-dependent Cre recombinase transgenes. Long acting PASylated leptin was administered to weight-reduced ArcPomc (-/-) mice to mimic the super-elevated leptin levels of obese mice. RESULTS: ArcPomc (-/-) mice had increased adiposity and leptin levels shortly after weaning. Despite chronic calorie restriction to achieve normoweight, ArcPomc (-/-) mice remained moderately hyperleptinemic and resistant to exogenous leptin's effects to reduce weight and food intake. However, subsequent Pomc reactivation in weight-matched ArcPomc (-/-) mice normalized plasma leptin, leptin sensitivity, adiposity, and food intake. In contrast, extreme hyperleptinemia induced by PASylated leptin blocked the full restoration of hypothalamic Pomc expression in calorie restricted ArcPomc (-/-) mice, which consequently regained 30% of their lost body weight and attained a metabolic steady state similar to that of tamoxifen treated obese ArcPomc (-/-) mice. CONCLUSIONS: Pomc reactivation in previously obese, calorie-restricted ArcPomc (-/-) mice normalized energy homeostasis, suggesting that their body weight set point was restored to control levels. In contrast, massively obese and hyperleptinemic ArcPomc (-/-) mice or those weight-matched and treated with PASylated leptin to maintain extreme hyperleptinemia prior to Pomc reactivation converged to an intermediate set point relative to lean control and obese ArcPomc (-/-) mice. We conclude that restoration of hypothalamic leptin sensitivity and Pomc expression is necessary for obese ArcPomc (-/-) mice to achieve and sustain normal metabolic homeostasis; whereas deficits in either parameter set a maladaptive allostatic balance that defends increased adiposity and body weight.

10.
Bioconjug Chem ; 27(10): 2359-2371, 2016 10 19.
Article in English | MEDLINE | ID: mdl-27598771

ABSTRACT

The Ornithodoros moubata Complement Inhibitor (OmCI) binds complement component 5 (C5) with high affinity and, thus, selectively prevents proteolytic activation of the terminal lytic complement pathway. A recombinant version of OmCI (also known as Coversin and rEV576) has proven efficacious in several animal models of complement-mediated diseases and successfully completed a phase Ia clinical trial. Coversin is a small 17 kDa lipocalin protein which has a very short plasma half-life if not bound to C5; therefore, the drug requires frequent dosing. We have improved the pharmacokinetics of Coversin by N-terminal translational conjugation with a 600 residue polypeptide composed of Pro, Ala, and Ser (PAS) residues. To this end, PAS-Coversin as well as the unmodified Coversin were functionally expressed in the cytoplasm of E. coli and purified to homogeneity. Both versions showed identical affinity to human C5, as determined by surface plasmon resonance measurements, and revealed similar complement inhibitory activity, as measured in ELISAs with human serum. In line with the PEG-like biophysical properties, PASylation dramatically prolonged the plasma half-life of uncomplexed Coversin by a factor ≥50 in mice. In a clinically relevant in vitro model of the complement-mediated disease paroxysmal nocturnal hemoglobinuria (PNH) both versions of Coversin effectively reduced erythrocyte lysis. Unexpectedly, while the IC50 values were comparable, PAS-Coversin reached a substantially lower plateau of residual lysis at saturating inhibitor concentrations. Taken together, our data demonstrate two clinically relevant improvements of PASylated Coversin: markedly increased plasma half-life and considerably reduced background hemolysis of erythrocytes with PNH-induced phenotype.


Subject(s)
Complement Inactivating Agents/chemistry , Complement Inactivating Agents/pharmacology , Animals , Circular Dichroism , Complement C5/antagonists & inhibitors , Complement Inactivating Agents/pharmacokinetics , Erythrocytes/drug effects , Female , Hemoglobinuria, Paroxysmal/drug therapy , Hemolysis/drug effects , Humans , Mice, Inbred BALB C , Mice, Inbred C57BL , Protein Engineering/methods , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Surface Plasmon Resonance
11.
Diabetologia ; 59(9): 2005-12, 2016 09.
Article in English | MEDLINE | ID: mdl-27272237

ABSTRACT

AIMS/HYPOTHESIS: Recombinant leptin offers a viable treatment for lipodystrophy (LD) syndromes. However, due to its short plasma half-life, leptin replacement therapy requires at least daily subcutaneous (s.c.) injections. Here, we optimised this treatment strategy in LD mice by using a novel leptin version with extended plasma half-life using PASylation technology. METHODS: A long-acting leptin version was prepared by genetic fusion with a 600 residue polypeptide made of Pro, Ala and Ser (PASylation), which enlarges the hydrodynamic volume and, thus, retards renal filtration, allowing less frequent injection. LD was induced in C57BL/6J mice by feeding a diet supplemented with conjugated linoleic acid (CLA). Chronic and acute effects of leptin treatment were assessed by evaluating plasma insulin levels, insulin tolerance, histological liver sections, energy expenditure, energy intake and body composition. RESULTS: In a cohort of female mice, 4 nmol PAS-leptin (applied via four s.c. injections every 3 days) successfully alleviated the CLA-induced LD phenotype, which was characterised by hyperinsulinaemia, insulin intolerance and hepatosteatosis. The same injection regimen had no measurable effect when unmodified recombinant leptin was administered at an equivalent dose. In a cohort of LD males, a single s.c. injection of PAS-leptin did not affect energy expenditure but inhibited food intake and promoted a shift in fuel selection towards preferential fat oxidation, which mechanistically substantiates the metabolic improvements. CONCLUSIONS/INTERPRETATION: The excellent pharmacological properties render PASylated leptin an agent of choice for refining both animal studies and therapeutic strategies in the context of LD syndromes and beyond.


Subject(s)
Fatty Liver/drug therapy , Fatty Liver/metabolism , Insulin Resistance/physiology , Leptin/therapeutic use , Animals , Energy Intake/drug effects , Energy Metabolism/drug effects , Fatty Liver/blood , Female , Insulin/metabolism , Leptin/chemistry , Linoleic Acids, Conjugated/toxicity , Lipid Metabolism/drug effects , Lipodystrophy/chemically induced , Lipodystrophy/drug therapy , Lipodystrophy/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Mice , Mice, Inbred C57BL
12.
Endocrinology ; 157(1): 233-44, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26492472

ABSTRACT

Body weight loss of Lep(ob/ob) mice in response to leptin is larger than expected from the reduction in energy intake alone, suggesting a thermogenic action of unknown magnitude. We exploited the superior pharmacological properties of a novel long-acting leptin prepared via PASylation to study the contribution of its anorexigenic and thermogenic effects. PASylation, the genetic fusion of leptin with a conformationally disordered polypeptide comprising 600 Pro/Ala/Ser (PAS) residues, provides a superior way to increase the hydrodynamic volume of the fusion protein, thus retarding kidney filtration and extending plasma half-life. Here a single PAS(600)-leptin injection (300 pmol/g) resulted in a maximal weight reduction of 21% 6 days after application. The negative energy balance of 300 kJ/(4 d) was driven by a decrease in energy intake, whereas energy expenditure remained stable. Mice that were food restricted to the same extent showed an energy deficit of only 220 kJ/(4 d) owing to recurring torpor bouts. Therefore, the anorexigenic effect of PAS(600)-leptin contributes 75% to weight loss, whereas the thermogenic action accounts for 25% by preventing hypometabolism. In a second experiment, just four injections of PAS(600)-leptin (100 pmol/g) administered in 5- to 6-day intervals rectified the Lep(ob/ob) phenotype. In total, 16 nmol of PAS(600)-leptin per mouse triggered a weight loss of 43% within 20 days and normalized hypothermia and glucose homeostasis as well as hepatic steatosis. The beneficial properties of PAS(600)-leptin are substantiated by a comparison with previous studies in which approximately 400 nmol (∼25-fold) unmodified leptin was mandatory to achieve similar improvements.


Subject(s)
Appetite Depressants/therapeutic use , Energy Metabolism/drug effects , Leptin/analogs & derivatives , Obesity/drug therapy , Recombinant Fusion Proteins/therapeutic use , Satiety Response/drug effects , Amino Acid Motifs , Animals , Appetite Depressants/administration & dosage , Appetite Depressants/adverse effects , Appetite Depressants/chemistry , Dose-Response Relationship, Drug , Energy Intake/drug effects , Female , Hypothalamus/drug effects , Hypothalamus/metabolism , Hypothalamus/pathology , Injections, Subcutaneous , Leptin/administration & dosage , Leptin/genetics , Leptin/therapeutic use , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Mice, Mutant Strains , Molecular Weight , Motor Activity/drug effects , Obesity/metabolism , Obesity/pathology , Peptides/metabolism , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/adverse effects , Recombinant Fusion Proteins/chemistry , Specific Pathogen-Free Organisms , Thermogenesis/drug effects , Weight Loss/drug effects
13.
Mol Pharm ; 12(5): 1431-42, 2015 May 04.
Article in English | MEDLINE | ID: mdl-25811325

ABSTRACT

Leptin plays a central role in the control of energy homeostasis and appetite and, thus, has attracted attention for therapeutic approaches in spite of its limited pharmacological activity owing to the very short circulation in the body. To improve drug delivery and prolong plasma half-life, we have fused murine leptin with Pro/Ala/Ser (PAS) polypeptides of up to 600 residues, which adopt random coil conformation with expanded hydrodynamic volume in solution and, consequently, retard kidney filtration in a similar manner as polyethylene glycol (PEG). Relative to unmodified leptin, size exclusion chromatography and dynamic light scattering revealed an approximately 21-fold increase in apparent size and a much larger molecular diameter of around 18 nm for PAS(600)-leptin. High receptor-binding activity for all PASylated leptin versions was confirmed in BIAcore measurements and cell-based dual-luciferase assays. Pharmacokinetic studies in mice revealed a much extended plasma half-life after ip injection, from 26 min for the unmodified leptin to 19.6 h for the PAS(600) fusion. In vivo activity was investigated after single ip injection of equimolar doses of each leptin version. Strongly increased and prolonged hypothalamic STAT3 phosphorylation was detected for PAS(600)-leptin. Also, a reduction in daily food intake by up to 60% as well as loss in body weight of >10% lasting for >5 days was observed, whereas unmodified leptin was merely effective for 1 day. Notably, application of a PASylated superactive mouse leptin antagonist (SMLA) led to the opposite effects. Thus, PASylated leptin not only provides a promising reagent to study its physiological role in vivo but also may offer a superior drug candidate for clinical therapy.


Subject(s)
Leptin/blood , Leptin/pharmacokinetics , Adipokines/metabolism , Animals , Chromatography, Gel , Circular Dichroism , Dynamic Light Scattering , Enzyme-Linked Immunosorbent Assay , Female , HEK293 Cells , Humans , Leptin/chemistry , Male , Mice , Phosphorylation/drug effects , Polyethylene Glycols/chemistry , STAT3 Transcription Factor/metabolism , Surface Plasmon Resonance
14.
MAbs ; 7(1): 96-109, 2015.
Article in English | MEDLINE | ID: mdl-25484039

ABSTRACT

Although antigen-binding fragments (Fabs) of antibodies constitute established tracers for in vivo radiodiagnostics, their functionality is hampered by a very short circulation half-life. PASylation, the genetic fusion with a long, conformationally disordered amino acid chain comprising Pro, Ala and Ser, provides a convenient way to expand protein size and, consequently, retard renal filtration. Humanized αHER2 and αCD20 Fabs were systematically fused with 100 to 600 PAS residues and produced in E. coli. Cytofluorimetric titration analysis on tumor cell lines confirmed that antigen-binding activities of the parental antibodies were retained. The radio-iodinated PASylated Fabs were studied by positron emission tomography (PET) imaging and biodistribution analysis in mouse tumor xenograft models. While the unmodified αHER2 and αCD20 Fabs showed weak tumor uptake (0.8% and 0.2% ID/g, respectively; 24 h p.i.) tumor-associated radioactivity was boosted with increasing PAS length (up to 9 and 26-fold, respectively), approaching an optimum for Fab-PAS400. Remarkably, 6- and 5-fold higher tumor-to-blood ratios compared with the unmodified Fabs were measured in the biodistribution analysis (48 h p.i.) for αHER2 Fab-PAS100 and Fab-PAS200, respectively. These findings were confirmed by PET studies, showing high imaging contrast in line with tumor-to-blood ratios of 12.2 and 5.7 (24 h p.i.) for αHER2 Fab-PAS100 and Fab-PAS200. Even stronger tumor signals were obtained with the corresponding αCD20 Fabs, both in PET imaging and biodistribution analysis, with an uptake of 2.8% ID/g for Fab-PAS100 vs. 0.24% ID/g for the unmodified Fab. Hence, by engineering Fabs via PASylation, plasma half-life can be tailored to significantly improve tracer uptake and tumor contrast, thus optimally matching reagent/target interactions.


Subject(s)
Antibodies, Neoplasm , Antigens, CD20 , Immunoglobulin Fab Fragments , Isotope Labeling , Neoplasms, Experimental , Positron-Emission Tomography , Receptor, ErbB-2 , Animals , Antibodies, Neoplasm/chemistry , Antibodies, Neoplasm/pharmacology , Cell Line, Tumor , Female , Heterografts , Humans , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/pharmacology , Iodine Isotopes/chemistry , Iodine Isotopes/pharmacokinetics , Iodine Isotopes/pharmacology , Mice , Neoplasm Transplantation , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology
15.
J Biol Chem ; 289(42): 29014-29, 2014 Oct 17.
Article in English | MEDLINE | ID: mdl-25193661

ABSTRACT

IFNß is a common therapeutic option to treat multiple sclerosis. It is unique among the family of type I IFNs in that it binds to the interferon receptors with high affinity, conferring exceptional biological properties. We have previously reported the generation of an interferon superagonist (dubbed YNSα8) that is built on the backbone of a low affinity IFNα but modified to exhibit higher receptor affinity than even for IFNß. Here, YNSα8 was fused with a 600-residue hydrophilic, unstructured N-terminal polypeptide chain comprising proline, alanine, and serine (PAS) to prolong its plasma half-life via "PASylation." PAS-YNSα8 exhibited a 10-fold increased half-life in both pharmacodynamic and pharmacokinetic assays in a transgenic mouse model harboring the human receptors, notably without any detectable loss in biological potency or bioavailability. This long-lived superagonist conferred significantly improved protection from MOG35-55-induced experimental autoimmune encephalomyelitis compared with IFNß, despite being injected with a 4-fold less frequency and at an overall 16-fold lower dosage. These data were corroborated by FACS measurements showing a decrease of CD11b(+)/CD45(hi) myeloid lineage cells detectable in the CNS, as well as a decrease in IBA(+) cells in spinal cord sections determined by immunohistochemistry for PAS-YNSα8-treated animals. Importantly, PAS-YNSα8 did not induce antibodies upon repeated administration, and its biological efficacy remained unchanged after 21 days of treatment. A striking correlation between increased levels of CD274 (PD-L1) transcripts from spleen-derived CD4(+) cells and improved clinical response to autoimmune encephalomyelitis was observed, indicating that, at least in this mouse model of multiple sclerosis, CD274 may serve as a biomarker to predict the effectiveness of IFN therapy to treat this complex disease.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/drug therapy , Interferon Type I/agonists , Interferon Type I/pharmacology , Peptides/chemistry , Animals , Cell Separation , Encephalomyelitis, Autoimmune, Experimental/metabolism , Female , Flow Cytometry , Humans , Interferon-beta/pharmacology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Multiple Sclerosis/drug therapy , Protein Engineering/methods , Recombinant Proteins/chemistry , Surface Plasmon Resonance , Treatment Outcome
16.
Protein Eng Des Sel ; 26(8): 489-501, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23754528

ABSTRACT

A major limitation of biopharmaceutical proteins is their fast clearance from circulation via kidney filtration, which strongly hampers efficacy both in animal studies and in human therapy. We have developed conformationally disordered polypeptide chains with expanded hydrodynamic volume comprising the small residues Pro, Ala and Ser (PAS). PAS sequences are hydrophilic, uncharged biological polymers with biophysical properties very similar to poly-ethylene glycol (PEG), whose chemical conjugation to drugs is an established method for plasma half-life extension. In contrast, PAS polypeptides offer fusion to a therapeutic protein on the genetic level, permitting Escherichia coli production of fully active proteins and obviating in vitro coupling or modification steps. Furthermore, they are biodegradable, thus avoiding organ accumulation, while showing stability in serum and lacking toxicity or immunogenicity in mice. We demonstrate that PASylation bestows typical biologics, such as interferon, growth hormone or Fab fragments, with considerably prolonged circulation and boosts bioactivity in vivo.


Subject(s)
Growth Hormone/chemistry , Growth Hormone/pharmacokinetics , Peptides/chemistry , Polyethylene Glycols/chemistry , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/pharmacokinetics , Alanine/chemistry , Alanine/genetics , Amino Acid Sequence , Animals , Base Sequence , Cloning, Molecular , Escherichia coli/genetics , Growth Hormone/genetics , Half-Life , Humans , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/genetics , Mice , Models, Molecular , Molecular Sequence Data , Peptides/genetics , Proline/chemistry , Proline/genetics , Protein Structure, Secondary , Recombinant Fusion Proteins/genetics , Serine/chemistry , Serine/genetics
17.
Toxicol Appl Pharmacol ; 263(3): 352-9, 2012 Sep 15.
Article in English | MEDLINE | ID: mdl-22820422

ABSTRACT

Lipocalins tailored with high affinity for prescribed ligands, so-called anticalins, constitute promising candidates as antidotes. Here, we present an animal study to investigate both pharmacokinetic and clinical effects of an anticalin specific for the digitalis compound digoxin. Intravenous digoxin (2.5-50 µg/kg/min) was administered to rats until first changes in the ECG occurred (dose finding study) or a priori for 30 min (kinetic study). The anticalin DigA16(H86N), dubbed DigiCal, was administered intravenously at absolute doses of 1, 5, 10 and 20 mg, while the control group received isotonic saline. Hemodynamic changes, several ECG parameters and digoxin concentration in plasma were monitored at given time intervals. After DigiCal administration free digoxin concentration in plasma ultrafiltrate declined dramatically within 1 min to the presumably non-toxic range. There was also a significant and DigiCal dose-dependent effect on longer survival, less ECG alterations, arrhythmia, and improved hemodynamics. Infusion of a lower digoxin dose (2.5 µg/kg/min) resulted in a more sustained reduction of free digoxin in plasma after DigiCal administration compared to a higher digoxin dose (25 µg/kg/min), whereas ECG and hemodynamic parameters did not markedly differ, reflecting the known relative insensitivity of rats towards digoxin toxicity. Notably, we observed a re-increase of free digoxin in plasma some time after bolus administration of DigiCal, which was presumably due to toxin redistribution from tissue in combination with the relatively fast renal clearance of the rather small protein antidote. We conclude that anticalins with appropriately engineered drug-binding activities and, possibly, prolonged plasma half-life offer prospects for next-generation antidotal therapy.


Subject(s)
Antidotes/pharmacology , Cardiotonic Agents/toxicity , Digoxin/toxicity , Lipocalins/pharmacology , Animals , Antidotes/administration & dosage , Cardiotonic Agents/administration & dosage , Cardiotonic Agents/pharmacokinetics , Digoxin/administration & dosage , Digoxin/pharmacokinetics , Dose-Response Relationship, Drug , Electrocardiography , Half-Life , Infusions, Intravenous , Lipocalins/administration & dosage , Male , Rats , Rats, Sprague-Dawley , Survival Rate , Time Factors
18.
PLoS One ; 7(4): e35798, 2012.
Article in English | MEDLINE | ID: mdl-22545138

ABSTRACT

A general obstacle for clinical cell preparations is limited purity, which causes variability in the quality and potency of cell products and might be responsible for negative side effects due to unwanted contaminants. Highly pure populations can be obtained best using positive selection techniques. However, in many cases target cell populations need to be segregated from other cells by combinations of multiple markers, which is still difficult to achieve--especially for clinical cell products. Therefore, we have generated low-affinity antibody-derived Fab-fragments, which stain like parental antibodies when multimerized via Strep-tag and Strep-Tactin, but can subsequently be removed entirely from the target cell population. Such reagents can be generated for virtually any antigen and can be used for sequential positive enrichment steps via paramagnetic beads. First protocols for multiparameter enrichment of two clinically relevant cell populations, CD4(high)/CD25(high)/CD45RA(high) 'regulatory T cells' and CD8(high)/CD62L(high)/CD45RA(neg) 'central memory T cells', have been established to determine quality and efficacy parameters of this novel technology, which should have broad applicability for clinical cell sorting as well as basic research.


Subject(s)
Antigens, CD/analysis , Cell Separation/methods , Flow Cytometry/methods , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Adult , Antigens, CD/immunology , CD4 Antigens/analysis , CD4 Antigens/immunology , CD8 Antigens/analysis , CD8 Antigens/immunology , Female , Humans , Immunoglobulin Fab Fragments/analysis , Immunoglobulin Fab Fragments/immunology , Interleukin-2 Receptor alpha Subunit/analysis , Interleukin-2 Receptor alpha Subunit/immunology , L-Selectin/analysis , L-Selectin/immunology , Leukocyte Common Antigens/analysis , Leukocyte Common Antigens/immunology , Male , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology
19.
Nucl Med Biol ; 39(5): 617-27, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22381781

ABSTRACT

INTRODUCTION: Therapeutic efficacy of intraperitoneal radioimmunotherapy is dependent on the time of retention of the radioimmunoconjugates within the peritoneal cavity. Therefore, the aim of this study was to investigate intraperitoneal retention of Fab, IgG and IgM radioimmunoconjugates. METHODS: Female Balb/c mice were injected with 213Bi- or 111In-labeled IgM, IgG and recombinant Fab conjugates intraperitoneally or intravenously. At different time points after injection, whole body distribution of radionuclides was imaged using a gamma camera. Distribution of radionuclides in selected organs was determined via γ-counting after sacrifice. Biological half-lives of the conjugates were calculated from whole body activities. RESULTS: After i.p. injection 213Bi-Fab rapidly accumulated in the kidneys indicative of glomerular filtration and reabsorption. Accumulation of 213Bi-IgG in the kidneys was significantly lower. 213Bi-IgM showed a striking accumulation in the liver 180 min after i.p. injection. 111In-IgG persisted in the circulation up to 72 h both after i.p. and i.v. injection. 111In-IgM showed a continuous accumulation in the liver. Moreover, 111In-IgM was significantly higher 24 h after i.v. injection than i.p. injection both in liver and spleen. These differences could be confirmed via scintigraphy. After injection of 111In-IgG differences in scintigraphic images between i.v. and i.p. were clearly visible only at 3 h. Biological half lives were 24 h, 45 h and 165 h for 111In-IgM, 111In-Fab and 111In-IgG, respectively. CONCLUSIONS: Retention of radioimmunoconjugates in the peritoneal cavity positively correlates with the molecular mass of the antibody. Therefore, IgM radioimmunoconjugates should be preferably used in radioimmunotherapy of free floating tumor cells and small tumor cell clusters in the ascites of the peritoneal cavity.


Subject(s)
Alpha Particles/therapeutic use , Immunoconjugates/chemistry , Immunoconjugates/pharmacokinetics , Immunotherapy/methods , Peritoneum/metabolism , Animals , Bismuth/therapeutic use , Female , Indium Radioisotopes/therapeutic use , Injections, Intraperitoneal , Mice , Mice, Inbred BALB C , Molecular Weight , Time Factors
20.
Methods Mol Biol ; 705: 211-24, 2011.
Article in English | MEDLINE | ID: mdl-21125388

ABSTRACT

While Escherichia coli is in wide use as a host organism for preparative protein production, problems with the folding of the recombinant gene product as well as protein aggregation, i.e., formation of inclusion bodies, are frequently encountered. This is particularly true for proteins that carry structural disulfide bonds, including antibody fragments, cytokines, growth factors, and extracellular fragments of eukaryotic cell surface receptors. In these cases, secretion into the oxidizing milieu of the bacterial periplasm in principle enables disulfide bond formation, resulting in a correctly folded and soluble protein. However, this process often occurs at low efficiency, depending on the nature of the recombinant gene product. Therefore, we have developed the helper plasmid pTUM4, which effects overexpression of four established periplasmic chaperones and/or folding catalysts: the thiol-disulfide oxidoreductases DsbA and DsbC, which catalyze the formation and isomerization of disulfide bridges, and two peptidyl-prolyl cis/trans isomerases with chaperone activity, FkpA and SurA. Here, we present a detailed protocol how to use this system for the bacterial secretion of recombinant proteins, including human EGF as a new example, and we give hints on optimization of the expression procedure.


Subject(s)
Epidermal Growth Factor/metabolism , Escherichia coli/metabolism , Periplasm/metabolism , Periplasmic Proteins/metabolism , Protein Folding , Recombinant Proteins/metabolism , Disulfides/metabolism , Epidermal Growth Factor/genetics , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Humans , Molecular Chaperones , Oxidation-Reduction , Periplasm/genetics , Periplasmic Proteins/genetics , Plasmids/genetics , Plasmids/metabolism , Protein Disulfide-Isomerases/genetics , Protein Disulfide-Isomerases/metabolism , Recombinant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...