Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Nat Commun ; 6: 5938, 2015 Jan 20.
Article in English | MEDLINE | ID: mdl-25600823

ABSTRACT

Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarily by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses.

2.
Phys Rev Lett ; 111(11): 114801, 2013 Sep 13.
Article in English | MEDLINE | ID: mdl-24074093

ABSTRACT

Initiating the gain process in a free-electron laser (FEL) from an external highly coherent source of radiation is a promising way to improve the pulse properties such as temporal coherence and synchronization performance in time-resolved pump-probe experiments at FEL facilities, but this so-called "seeding" suffers from the lack of adequate sources at short wavelengths. We report on the first successful seeding at a wavelength as short as 38.2 nm, resulting in GW-level, coherent FEL radiation pulses at this wavelength as well as significant second harmonic emission at 19.1 nm. The external seed pulses are about 1 order of magnitude shorter compared to previous experiments allowing an ultimate time resolution for the investigation of dynamic processes enabling breakthroughs in ultrafast science with FELs. The seeding pulse is the 21st harmonic of an 800-nm, 15-fs (rms) laser pulse generated in an argon medium. Methods for finding the overlap of seed pulses with electron bunches in spatial, longitudinal, and spectral dimensions are discussed and results are presented. The experiment was conducted at FLASH, the FEL user facility at DESY in Hamburg, Germany.

3.
Opt Lett ; 36(13): 2456-8, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21725443

ABSTRACT

We report on a Yb:YAG Innoslab laser amplifier system for generation of subpicsecond high energy pump pulses for optical parametric chirped pulse amplification (OPCPA) at high repetition rates. Pulse energies of up to 20 mJ (at 12.5 kHz) and repetition rates of up to 100 kHz were attained with pulse durations of 830 fs and average power in excess of 200 W. We further investigate the possibility to use subpicosecond pulses to derive a stable continuum in a YAG crystal for OPCPA seeding.

4.
Opt Express ; 18(12): 12719-26, 2010 Jun 07.
Article in English | MEDLINE | ID: mdl-20588400

ABSTRACT

We report on a high power optical parametric amplifier delivering 8 fs pulses with 6 GW peak power. The system is pumped by a fiber amplifier and operated at 96 kHz repetition rate. The average output power is as high as 6.7 W, which is the highest average power few-cycle pulse laser reported so far. When stabilizing the seed oscillator, the system delivered carrier-envelop phase stable laser pulses. Furthermore, high harmonic generation up to the 33(th) order (21.8 nm) is demonstrated in a Krypton gas jet. In addition, the scalability of the presented laser system is discussed.

5.
Phys Rev Lett ; 104(14): 144801, 2010 Apr 09.
Article in English | MEDLINE | ID: mdl-20481941

ABSTRACT

High-gain free-electron lasers (FELs) are capable of generating femtosecond x-ray pulses with peak brilliances many orders of magnitude higher than at other existing x-ray sources. In order to fully exploit the opportunities offered by these femtosecond light pulses in time-resolved experiments, an unprecedented synchronization accuracy is required. In this Letter, we distributed the pulse train of a mode-locked fiber laser with femtosecond stability to different locations in the linear accelerator of the soft x-ray FEL FLASH. A novel electro-optic detection scheme was applied to measure the electron bunch arrival time with an as yet unrivaled precision of 6 fs (rms). With two beam-based feedback systems we succeeded in stabilizing both the arrival time and the electron bunch compression process within two magnetic chicanes, yielding a significant reduction of the FEL pulse energy jitter.

6.
Opt Express ; 18(5): 4689-94, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20389481

ABSTRACT

We report on the performance of a 60 kHz repetition rate sub-10 fs, optical parametric chirped pulse amplifier system with 2 W average power and 3 GW peak power. This is to our knowledge the highest average power sub-10 fs kHz-amplifier system reported to date. The amplifier is conceived for applications at free electron laser facilities and is designed such to be scalable in energy and repetition rate.

7.
Phys Rev Lett ; 99(16): 164801, 2007 Oct 19.
Article in English | MEDLINE | ID: mdl-17995259

ABSTRACT

The longitudinal profiles of ultrashort relativistic electron bunches at the soft x-ray free-electron laser FLASH have been investigated using two single-shot detection schemes: an electro-optic (EO) detector measuring the Coulomb field of the bunch and a radio-frequency structure transforming the charge distribution into a transverse streak. A comparison permits an absolute calibration of the EO technique. EO signals as short as 60 fs (rms) have been observed, which is a new record in the EO detection of single electron bunches and close to the limit given by the EO material properties.

8.
Opt Lett ; 32(9): 1044-6, 2007 May 01.
Article in English | MEDLINE | ID: mdl-17410229

ABSTRACT

We demonstrate a self-aligned balanced cross correlator based on a single type-II phase-matched periodically poled KTiOPO4 crystal. The birefringence of the crystal generates a walk-off between the two orthogonally polarized pulses. This enables the balancing of the cross correlator with input pulses at the same center wavelength. As a first application of this single-crystal balanced cross correlator, we stabilized a 310 m long optical fiber link for timing distribution with long-term stable 10 fs precision.

9.
Science ; 315(5812): 633-6, 2007 Feb 02.
Article in English | MEDLINE | ID: mdl-17272718

ABSTRACT

Intense femtosecond laser excitation can produce transient states of matter that would otherwise be inaccessible to laboratory investigation. At high excitation densities, the interatomic forces that bind solids and determine many of their properties can be substantially altered. Here, we present the detailed mapping of the carrier density-dependent interatomic potential of bismuth approaching a solid-solid phase transition. Our experiments combine stroboscopic techniques that use a high-brightness linear electron accelerator-based x-ray source with pulse-by-pulse timing reconstruction for femtosecond resolution, allowing quantitative characterization of the interatomic potential energy surface of the highly excited solid.

10.
Phys Rev Lett ; 95(12): 125701, 2005 Sep 16.
Article in English | MEDLINE | ID: mdl-16197085

ABSTRACT

The melting dynamics of laser excited InSb have been studied with femtosecond x-ray diffraction. These measurements observe the delayed onset of diffusive atomic motion, signaling the appearance of liquidlike dynamics. They also demonstrate that the root-mean-squared displacement in the [111] direction increases faster than in the [110] direction after the first 500 fs. This structural anisotropy indicates that the initially generated fluid differs significantly from the equilibrium liquid.

11.
Phys Rev Lett ; 94(11): 114801, 2005 Mar 25.
Article in English | MEDLINE | ID: mdl-15903864

ABSTRACT

Linear-accelerator-based sources will revolutionize ultrafast x-ray science due to their unprecedented brightness and short pulse duration. However, time-resolved studies at the resolution of the x-ray pulse duration are hampered by the inability to precisely synchronize an external laser to the accelerator. At the Sub-Picosecond Pulse Source at the Stanford Linear-Accelerator Center we solved this problem by measuring the arrival time of each high energy electron bunch with electro-optic sampling. This measurement indirectly determined the arrival time of each x-ray pulse relative to an external pump laser pulse with a time resolution of better than 60 fs rms.

12.
Science ; 308(5720): 392-5, 2005 Apr 15.
Article in English | MEDLINE | ID: mdl-15831753

ABSTRACT

The motion of atoms on interatomic potential energy surfaces is fundamental to the dynamics of liquids and solids. An accelerator-based source of femtosecond x-ray pulses allowed us to follow directly atomic displacements on an optically modified energy landscape, leading eventually to the transition from crystalline solid to disordered liquid. We show that, to first order in time, the dynamics are inertial, and we place constraints on the shape and curvature of the transition-state potential energy surface. Our measurements point toward analogies between this nonequilibrium phase transition and the short-time dynamics intrinsic to equilibrium liquids.

13.
J Synchrotron Radiat ; 11(Pt 3): 227-38, 2004 May 01.
Article in English | MEDLINE | ID: mdl-15103109

ABSTRACT

A study of the potential for the development of the Linac Coherent Light Source (LCLS) beyond the specifications of the baseline design is presented. These future developments include delivery of X-ray pulses in the 1 fs regime, extension of the spectral range, increase of the FEL power, exploitation of the spontaneous emission, and a more flexible time structure. As this potential is exploited, the LCLS can maintain its role as a world-leading instrument for many years beyond its commissioning in 2008 and initial operation as the world's first X-ray free-electron laser.

14.
Phys Rev Lett ; 92(7): 074801, 2004 Feb 20.
Article in English | MEDLINE | ID: mdl-14995861

ABSTRACT

We propose a novel method to generate femtosecond and subfemtosecond photon pulses in a free-electron laser by selectively spoiling the transverse emittance of the electron beam. Its merits are simplicity and ease of implementation. When the system is applied to the Linac Coherent Light Source, it can provide x-ray pulses the order of 1 fs in duration containing about 10(10) transversely coherent photons.


Subject(s)
Lasers , Synchrotrons , Proteins/chemistry , Scattering, Radiation , Time Factors , X-Rays
15.
Phys Rev Lett ; 88(7): 074802, 2002 Feb 18.
Article in English | MEDLINE | ID: mdl-11863903

ABSTRACT

An experiment has been carried out at the TESLA Test Facility linac to investigate the wake fields generated by picosecond electron bunches in narrow beam pipes with an artificially roughened inner surface. The energy structure imposed on the bunches by the wake fields has been analyzed with a magnetic spectrometer. Strong harmonic-wake-field effects are observed as expected from simulations in which the rough surface is modeled by a dielectric layer.

16.
Phys Rev Lett ; 85(18): 3825-9, 2000 Oct 30.
Article in English | MEDLINE | ID: mdl-11041937

ABSTRACT

We present the first observation of self-amplified spontaneous emission (SASE) in a free-electron laser (FEL) in the vacuum ultraviolet regime at 109 nm wavelength (11 eV). The observed free-electron laser gain (approximately 3000) and the radiation characteristics, such as dependency on bunch charge, angular distribution, spectral width, and intensity fluctuations, are all consistent with the present models for SASE FELs.

SELECTION OF CITATIONS
SEARCH DETAIL
...