Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 6(1): 190-196, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-28553467

ABSTRACT

Oxygen evolution was investigated on model, mass-selected RuO2 nanoparticles in acid, prepared by magnetron sputtering. Our investigations include electrochemical measurements, electron microscopy, scanning tunneling microscopy and X-ray photoelectron spectroscopy. We show that the stability and activity of nanoparticulate RuO2 is highly sensitive to its surface pretreatment. At 0.25 V overpotential, the catalysts show a mass activity of up to 0.6 A mg-1 and a turnover frequency of 0.65 s-1, one order of magnitude higher than the current state-of-the-art.

2.
Phys Chem Chem Phys ; 15(45): 19659-64, 2013 Dec 07.
Article in English | MEDLINE | ID: mdl-24131953

ABSTRACT

The underpotential deposition (UPD) of copper on a Pt(111) electrode and the influence of gas coadsorbates, i.e. CO and CO2, on the thus deposited copper layer were studied in a 0.1 M HClO4 electrolyte by means of EC-STM. By UPD, an atomically flat Cu layer is formed, which exhibits a pseudomorphic (1 × 1) structure. However, it contains several point defects due to which its total coverage is less than a monolayer, in agreement with the measured charge density in the CV curves. Upon exposure to a CO-saturated solution the pseudomorphic structure collapses to a coalescent structure with many vacancy islands. This phase transition is induced by the preferential binding of CO to the Pt(111) surface. In contrast, CO2, which binds stronger to copper, does not affect the pseudomorphic structure of the Cu layer.

3.
Phys Chem Chem Phys ; 9(17): 2142-5, 2007 May 07.
Article in English | MEDLINE | ID: mdl-17464396

ABSTRACT

One monolayer of Cu was prepared on Au(111) by underpotential deposition from CuSO4/H2SO4 solution and, by two electrolyte exchanges for (i) Cu-free H2SO4 and (ii) NaOH/Na2S solution, exposed to bisulfide. This procedure leads to several incommensurate phases with characteristic stripe patterns. These are irreversibly displaced upon cathodic potential sweeps by different structures, which, after returning to the initial potential, transform into the rectangular CuxS phase already known for the sulfidation of a Cu submonolayer on Au(111).

4.
Langmuir ; 20(7): 2803-6; discussion 2807-8, 2004 Mar 30.
Article in English | MEDLINE | ID: mdl-15835156

ABSTRACT

We have reinvestigated the behavior of a Cu(111) electrode in pure and cinchonidine containing aqueous 0.1 M HClO4 solution by cyclic voltammetry (CV) and in situ electrochemical scanning tunneling microscopy (STM). In contrast to previous publications by Wan et al. (Langmuir 2000, 19, 1958-1962 and references cited therein) on Cu(111) in pure 0.1 M HClO4 which claimed an adsorbate-free Cu(111) surface in the entire potential range, we have found a highly ordered hexagonal adsorbate structure with a (4 x 4) unit cell, which is stable in the potential range from hydrogen evolution at -350 to -150 mV (RHE). The adsorbate-free (1 x 1) Cu(111) surface is only visible in a fairly small potential range from -150 to +50 mV. A disordered surface structure is formed at more positive potentials which is interpreted by adsorption of an oxygen-containing species. Furthermore, the formation of a highly ordered cinchonidine adlayer on Cu(111) in 0.1 M HClO4 as reported by Wan et al. (J. Am. Chem. Soc. 2002, 124, 14300-14301) could not be reproduced here. In fact, the similarity of all structures reported by Wan et al. for a great variety of different organic adlayers on Cu(111) in HClO4 solution including cinchonidine with the (4 x 4) superstructure found here already in pure HClO4 solution (i.e., without organic solute) casts serious doubts on the validity of those previous results by Wan et al. in general.

SELECTION OF CITATIONS
SEARCH DETAIL
...