Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38134415

ABSTRACT

Small-molecule analyte detection is key for improving quality of life, particularly in health monitoring through the early detection of diseases. However, detecting specific markers in complex multicomponent media using devices compatible with point-of-care (PoC) technologies is still a major challenge. Here, we introduce a novel approach that combines molecularly imprinted polymers (MIPs), electrolyte-gated transistors (EGTs) based on 2D materials, and machine learning (ML) to detect hippuric acid (HA) in artificial urine, being a critical marker for toluene intoxication, parasitic infections, and kidney and bowel inflammation. Reduced graphene oxide (rGO) was used as the sensory material and molecularly imprinted polymer (MIP) as supramolecular receptors. Employing supervised ML techniques based on symbolic regression and compressive sensing enabled us to comprehensively analyze the EGT transfer curves, eliminating the need for arbitrary signal selection and allowing a multivariate analysis during HA detection. The resulting device displayed simultaneously low operating voltages (<0.5 V), rapid response times (≤10 s), operation across a wide range of HA concentrations (from 0.05 to 200 nmol L-1), and a low limit of detection (LoD) of 39 pmol L-1. Thanks to the ML multivariate analysis, we achieved a 2.5-fold increase in the device sensitivity (1.007 µA/nmol L-1) with respect to the human data analysis (0.388 µA/nmol L-1). Our method represents a major advance in PoC technologies, by enabling the accurate determination of small-molecule markers in complex media via the combination of ML analysis, supramolecular analyte recognition, and electrolytic transistors.

2.
Nano Lett ; 23(10): 4160-4166, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37141148

ABSTRACT

Vertical van der Waals heterostructures of semiconducting transition metal dichalcogenides realize moiré systems with rich correlated electron phases and moiré exciton phenomena. For material combinations with small lattice mismatch and twist angles as in MoSe2-WSe2, however, lattice reconstruction eliminates the canonical moiré pattern and instead gives rise to arrays of periodically reconstructed nanoscale domains and mesoscopically extended areas of one atomic registry. Here, we elucidate the role of atomic reconstruction in MoSe2-WSe2 heterostructures synthesized by chemical vapor deposition. With complementary imaging down to the atomic scale, simulations, and optical spectroscopy methods, we identify the coexistence of moiré-type cores and extended moiré-free regions in heterostacks with parallel and antiparallel alignment. Our work highlights the potential of chemical vapor deposition for applications requiring laterally extended heterosystems of one atomic registry or exciton-confining heterostack arrays.

3.
PLoS Comput Biol ; 18(5): e1010121, 2022 05.
Article in English | MEDLINE | ID: mdl-35551296

ABSTRACT

The nucleocapsid (N) protein of the SARS-CoV-2 virus, the causal agent of COVID-19, is a multifunction phosphoprotein that plays critical roles in the virus life cycle, including transcription and packaging of the viral RNA. To play such diverse roles, the N protein has two globular RNA-binding modules, the N- (NTD) and C-terminal (CTD) domains, which are connected by an intrinsically disordered region. Despite the wealth of structural data available for the isolated NTD and CTD, how these domains are arranged in the full-length protein and how the oligomerization of N influences its RNA-binding activity remains largely unclear. Herein, using experimental data from electron microscopy and biochemical/biophysical techniques combined with molecular modeling and molecular dynamics simulations, we show that, in the absence of RNA, the N protein formed structurally dynamic dimers, with the NTD and CTD arranged in extended conformations. However, in the presence of RNA, the N protein assumed a more compact conformation where the NTD and CTD are packed together. We also provided an octameric model for the full-length N bound to RNA that is consistent with electron microscopy images of the N protein in the presence of RNA. Together, our results shed new light on the dynamics and higher-order oligomeric structure of this versatile protein.


Subject(s)
Coronavirus Nucleocapsid Proteins , SARS-CoV-2 , COVID-19 , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Nucleocapsid Proteins/metabolism , Humans , Microscopy, Electron , Molecular Dynamics Simulation , Nucleocapsid Proteins/chemistry , Nucleocapsid Proteins/metabolism , Phosphoproteins/metabolism , Protein Binding , RNA, Viral/genetics , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/metabolism
4.
J Phys Chem Lett ; 11(4): 1564-1569, 2020 Feb 20.
Article in English | MEDLINE | ID: mdl-32023063

ABSTRACT

In recent years, cryogenic electron microscopy (Cryo-EM) has revolutionized the structure determination of wet samples and especially that of biological macromolecules. The glassy-water medium in which the molecules are embedded is considered an almost in vivo environment for biological samples. The local structure of amorphous ice is known from neutron- and X-ray-diffraction studies, techniques appropriate for much larger volumes than those used in cryo-EM. We here present a first study of the pair-distribution function g(r) of glassy water under cryo-EM conditions using electron diffraction data. We found g(r) to be between that of low-density amorphous ice and that of supercooled water. Under electron exposure, cubic-ice regions were found to nucleate in thicker glassy-water samples. Our work enables to obtain quantitative structural information using g(r) from cryo-EM.

5.
J Chem Inf Model ; 60(2): 452-459, 2020 02 24.
Article in English | MEDLINE | ID: mdl-31651163

ABSTRACT

In this perspective, we discuss computational advances in the last decades, both in algorithms as well as in technologies, that enabled the development, widespread use, and maturity of simulation methods for molecular and materials systems. Such advances led to the generation of large amounts of data, which required the creation of several computational databases. Within this scenario, with the democratization of data access, the field now encounters several opportunities for data-driven approaches toward chemical and materials problems. Specifically, machine learning methods for predictions of novel materials or properties are being increasingly used with great success. However, black box usage fails in many instances; several technical details require expert knowledge in order for the predictions to be useful, such as with descriptors and algorithm selection. These approaches represent a direction for further developments, notably allowing advances for both developed and emerging countries with modest computational infrastructures.


Subject(s)
Big Data , Chemistry/methods , Quantum Theory , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...