Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Cell Rep ; 42(8): 112934, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37537840

ABSTRACT

Extracellular potassium [K+]o elevation during synaptic activity retrogradely modifies presynaptic release and astrocytic uptake of glutamate. Hence, local K+ clearance and replenishment mechanisms are crucial regulators of glutamatergic transmission and plasticity. Based on recordings of astrocytic inward rectifier potassium current IKir and K+-sensitive electrodes as sensors of [K+]o as well as on in silico modeling, we demonstrate that the neuronal K+-Cl- co-transporter KCC2 clears local perisynaptic [K+]o during synaptic excitation by operating in an activity-dependent reversed mode. In reverse mode, KCC2 replenishes K+ in dendritic spines and complements clearance of [K+]o, therewith attenuating presynaptic glutamate release and shortening LTP. We thus demonstrate a physiological role of KCC2 in neuron-glial interactions and regulation of synaptic signaling and plasticity through the uptake of postsynaptically released K+.


Subject(s)
Potassium , Symporters , Animals , Glutamates , Potassium/metabolism , Synapses/metabolism , K Cl- Cotransporters
2.
Nature ; 618(7963): 118-125, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37225999

ABSTRACT

Insect asynchronous flight is one of the most prevalent forms of animal locomotion used by more than 600,000 species. Despite profound insights into the motor patterns1, biomechanics2,3 and aerodynamics underlying asynchronous flight4,5, the architecture and function of the central-pattern-generating (CPG) neural network remain unclear. Here, on the basis of an experiment-theory approach including electrophysiology, optophysiology, Drosophila genetics and mathematical modelling, we identify a miniaturized circuit solution with unexpected properties. The CPG network consists of motoneurons interconnected by electrical synapses that, in contrast to doctrine, produce network activity splayed out in time instead of synchronized across neurons. Experimental and mathematical evidence support a generic mechanism for network desynchronization that relies on weak electrical synapses and specific excitability dynamics of the coupled neurons. In small networks, electrical synapses can synchronize or desynchronize network activity, depending on the neuron-intrinsic dynamics and ion channel composition. In the asynchronous flight CPG, this mechanism translates unpatterned premotor input into stereotyped neuronal firing with fixed sequences of cell activation that ensure stable wingbeat power and, as we show, is conserved across multiple species. Our findings prove a wider functional versatility of electrical synapses in the dynamic control of neural circuits and highlight the relevance of detecting electrical synapses in connectomics.


Subject(s)
Drosophila melanogaster , Electrical Synapses , Flight, Animal , Gap Junctions , Neural Pathways , Animals , Electrical Synapses/physiology , Electrophysiological Phenomena , Flight, Animal/physiology , Gap Junctions/metabolism , Motor Neurons/physiology , Drosophila melanogaster/physiology
3.
Nat Commun ; 13(1): 3934, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35803913

ABSTRACT

Almost seventy years after the discovery of the mechanisms of action potential generation, some aspects of their computational consequences are still not fully understood. Based on mathematical modeling, we here explore a type of action potential dynamics - arising from a saddle-node homoclinic orbit bifurcation - that so far has received little attention. We show that this type of dynamics is to be expected by specific changes in common physiological parameters, like an elevation of temperature. Moreover, we demonstrate that it favours synchronization patterns in networks - a feature that becomes particularly prominent when system parameters change such that homoclinic spiking is induced. Supported by in-vitro hallmarks for homoclinic spikes in the rodent brain, we hypothesize that the prevalence of homoclinic spikes in the brain may be underestimated and provide a missing link between the impact of biophysical parameters on abrupt transitions between asynchronous and synchronous states of electrical activity in the brain.


Subject(s)
Models, Neurological , Action Potentials/physiology , Temperature
4.
Elife ; 112022 04 01.
Article in English | MEDLINE | ID: mdl-35362411

ABSTRACT

Dynamics of excitable cells and networks depend on the membrane time constant, set by membrane resistance and capacitance. Whereas pharmacological and genetic manipulations of ionic conductances of excitable membranes are routine in electrophysiology, experimental control over capacitance remains a challenge. Here, we present capacitance clamp, an approach that allows electrophysiologists to mimic a modified capacitance in biological neurons via an unconventional application of the dynamic clamp technique. We first demonstrate the feasibility to quantitatively modulate capacitance in a mathematical neuron model and then confirm the functionality of capacitance clamp in in vitro experiments in granule cells of rodent dentate gyrus with up to threefold virtual capacitance changes. Clamping of capacitance thus constitutes a novel technique to probe and decipher mechanisms of neuronal signaling in ways that were so far inaccessible to experimental electrophysiology.


Subject(s)
Brain , Neurons , Membrane Potentials/physiology , Neurons/physiology , Patch-Clamp Techniques
5.
Curr Opin Neurobiol ; 71: 84-91, 2021 12.
Article in English | MEDLINE | ID: mdl-34688051

ABSTRACT

Nervous systems, like any organismal structure, have been shaped by evolutionary processes to increase fitness. The resulting neural 'bauplan' has to account for multiple objectives simultaneously, including computational function, as well as additional factors such as robustness to environmental changes and energetic limitations. Oftentimes these objectives compete, and quantification of the relative impact of individual optimization targets is non-trivial. Pareto optimality offers a theoretical framework to decipher objectives and trade-offs between them. We, therefore, highlight Pareto theory as a useful tool for the analysis of neurobiological systems from biophysically detailed cells to large-scale network structures and behavior. The Pareto approach can help to assess optimality, identify relevant objectives and their respective impact, and formulate testable hypotheses.


Subject(s)
Algorithms , Biological Evolution , Nervous System
6.
Curr Opin Neurobiol ; 70: 81-88, 2021 10.
Article in English | MEDLINE | ID: mdl-34454303

ABSTRACT

In view of ever-changing conditions both in the external world and in intrinsic brain states, maintaining the robustness of computations poses a challenge, adequate solutions to which we are only beginning to understand. At the level of cell-intrinsic properties, biophysical models of neurons permit one to identify relevant physiological substrates that can serve as regulators of neuronal excitability and to test how feedback loops can stabilize crucial variables such as long-term calcium levels and firing rates. Mathematical theory has also revealed a rich set of complementary computational properties arising from distinct cellular dynamics and even shaping processing at the network level. Here, we provide an overview over recently explored homeostatic mechanisms derived from biophysical models and hypothesize how multiple dynamical characteristics of cells, including their intrinsic neuronal excitability classes, can be stably controlled.


Subject(s)
Models, Neurological , Neurons , Action Potentials/physiology , Homeostasis/physiology , Neurons/physiology
7.
PLoS Comput Biol ; 17(5): e1008510, 2021 05.
Article in English | MEDLINE | ID: mdl-34043638

ABSTRACT

During normal neuronal activity, ionic concentration gradients across a neuron's membrane are often assumed to be stable. Prolonged spiking activity, however, can reduce transmembrane gradients and affect voltage dynamics. Based on mathematical modeling, we investigated the impact of neuronal activity on ionic concentrations and, consequently, the dynamics of action potential generation. We find that intense spiking activity on the order of a second suffices to induce changes in ionic reversal potentials and to consistently induce a switch from a regular to an intermittent firing mode. This transition is caused by a qualitative alteration in the system's voltage dynamics, mathematically corresponding to a co-dimension-two bifurcation from a saddle-node on invariant cycle (SNIC) to a homoclinic orbit bifurcation (HOM). Our electrophysiological recordings in mouse cortical pyramidal neurons confirm the changes in action potential dynamics predicted by the models: (i) activity-dependent increases in intracellular sodium concentration directly reduce action potential amplitudes, an effect typically attributed solely to sodium channel inactivation; (ii) extracellular potassium accumulation switches action potential generation from tonic firing to intermittently interrupted output. Thus, individual neurons may respond very differently to the same input stimuli, depending on their recent patterns of activity and/or the current brain-state.


Subject(s)
Models, Neurological , Potassium/metabolism , Pyramidal Cells/physiology , Action Potentials/physiology , Animals , Cerebral Cortex/cytology , Cerebral Cortex/physiology , Computational Biology , Computer Simulation , Extracellular Fluid/metabolism , Intracellular Fluid/metabolism , Mice , Sodium/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Systems Analysis
8.
Phys Rev E ; 103(1-1): 012407, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33601551

ABSTRACT

Neuronal voltage dynamics of regularly firing neurons typically has one stable attractor: either a fixed point (like in the subthreshold regime) or a limit cycle that defines the tonic firing of action potentials (in the suprathreshold regime). In two of the three spike onset bifurcation sequences that are known to give rise to all-or-none type action potentials, however, the resting-state fixed point and limit cycle spiking can coexist in an intermediate regime, resulting in bistable dynamics. Here, noise can induce switches between the attractors, i.e., between rest and spiking, and thus increase the variability of the spike train compared to neurons with only one stable attractor. Qualitative features of the resulting spike statistics depend on the spike onset bifurcations. This paper focuses on the creation of the spiking limit cycle via the saddle-homoclinic orbit (HOM) bifurcation and derives interspike interval (ISI) densities for a conductance-based neuron model in the bistable regime. The ISI densities of bistable homoclinic neurons are found to be unimodal yet distinct from the inverse Gaussian distribution associated with the saddle-node-on-invariant-cycle bifurcation. It is demonstrated that for the HOM bifurcation the transition between rest and spiking is mainly determined along the downstroke of the action potential-a dynamical feature that is not captured by the commonly used reset neuron models. The deduced spike statistics can help to identify HOM dynamics in experimental data.


Subject(s)
Models, Neurological , Neurons/cytology , Action Potentials , Nonlinear Dynamics
9.
PLoS One ; 15(8): e0236949, 2020.
Article in English | MEDLINE | ID: mdl-32750067

ABSTRACT

Heart arrhythmia is a pathological condition where the sequence of electrical impulses in the heart deviates from the normal rhythm. It is often associated with specific channelopathies in cardiac tissue, yet how precisely the changes in ionic channels affect the electrical activity of cardiac cells is still an open question. Even though sodium channel mutations that underlie cardiac syndromes like the Long-Q-T and the Brugada-syndrome are known to affect a number of channel parameters simultaneously, previous studies have predominantly focused on the persistent late component of the sodium current as the causal explanation for an increased risk of heart arrhythmias in these cardiac syndromes. A systematic analysis of the impact of other important sodium channel parameters is currently lacking. Here, we investigate the reduced ten-Tusscher-model for single human epicardium ventricle cells and use mathematical bifurcation analysis to predict the dependence of the cardiac action potential on sodium channel activation and inactivation time-constants and voltage dependence. We show that, specifically, shifts of the voltage dependence of activation and inactivation curve can lead to drastic changes in the action potential dynamics, inducing oscillations of the membrane potential as well as bistability. Our results not only demonstrate a new way to induce multiple co-existing states of excitability (biexcitability) but also emphasize the critical role of the voltage dependence of sodium channel activation and inactivation curves for the induction of heart-arrhythmias.


Subject(s)
Action Potentials , Arrhythmias, Cardiac/physiopathology , Models, Biological , Myocytes, Cardiac/physiology , Voltage-Gated Sodium Channels/physiology , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/metabolism , Brugada Syndrome , Heart Ventricles/metabolism , Humans , Long QT Syndrome , Mutation , Myocytes, Cardiac/metabolism , Ventricular Function , Voltage-Gated Sodium Channels/genetics
10.
Elife ; 92020 02 07.
Article in English | MEDLINE | ID: mdl-32031523

ABSTRACT

Across biological systems, cooperativity between proteins enables fast actions, supra-linear responses, and long-lasting molecular switches. In the nervous system, however, the function of cooperative interactions between voltage-dependent ionic channels remains largely unknown. Based on mathematical modeling, we here demonstrate that clusters of strongly cooperative ion channels can plausibly form bistable conductances. Consequently, clusters are permanently switched on by neuronal spiking, switched off by strong hyperpolarization, and remain in their state for seconds after stimulation. The resulting short-term memory of the membrane potential allows to generate persistent firing when clusters of cooperative channels are present together with non-cooperative spike-generating conductances. Dynamic clamp experiments in rodent cortical neurons confirm that channel cooperativity can robustly induce graded persistent activity - a single-cell based, multistable mnemonic firing mode experimentally observed in several brain regions. We therefore propose that ion channel cooperativity constitutes an efficient cell-intrinsic implementation for short-term memories at the voltage level.


Subject(s)
Ion Channels/physiology , Membrane Potentials/physiology , Memory, Short-Term/physiology , Models, Neurological , Animals , Hippocampus/cytology , Hippocampus/physiology , Male , Mice , Mice, Inbred C57BL , Patch-Clamp Techniques
11.
Phys Rev E ; 95(5-1): 052203, 2017 May.
Article in English | MEDLINE | ID: mdl-28618541

ABSTRACT

Prominent changes in neuronal dynamics have previously been attributed to a specific switch in onset bifurcation, the Bogdanov-Takens (BT) point. This study unveils another, relevant and so far underestimated transition point: the saddle-node-loop bifurcation, which can be reached by several parameters, including capacitance, leak conductance, and temperature. This bifurcation turns out to induce even more drastic changes in synchronization than the BT transition. This result arises from a direct effect of the saddle-node-loop bifurcation on the limit cycle and hence spike dynamics. In contrast, the BT bifurcation exerts its immediate influence upon the subthreshold dynamics and hence only indirectly relates to spiking. We specifically demonstrate that the saddle-node-loop bifurcation (i) ubiquitously occurs in planar neuron models with a saddle node on invariant cycle onset bifurcation, and (ii) results in a symmetry breaking of the system's phase-response curve. The latter entails an increase in synchronization range in pulse-coupled oscillators, such as neurons. The derived bifurcation structure is of interest in any system for which a relaxation limit is admissible, such as Josephson junctions and chemical oscillators.

12.
Eur J Neurosci ; 45(8): 1032-1043, 2017 04.
Article in English | MEDLINE | ID: mdl-27374316

ABSTRACT

Inhibition is known to influence the forward-directed flow of information within neurons. However, also regulation of backward-directed signals, such as backpropagating action potentials (bAPs), can enrich the functional repertoire of local circuits. Inhibitory control of bAP spread, for example, can provide a switch for the plasticity of excitatory synapses. Although such a mechanism is possible, it requires a precise timing of inhibition to annihilate bAPs without impairment of forward-directed excitatory information flow. Here, we propose a specific learning rule for inhibitory synapses to automatically generate the correct timing to gate bAPs in pyramidal cells when embedded in a local circuit of feedforward inhibition. Based on computational modeling of multi-compartmental neurons with physiological properties, we demonstrate that a learning rule with anti-Hebbian shape can establish the required temporal precision. In contrast to classical spike-timing dependent plasticity of excitatory synapses, the proposed inhibitory learning mechanism does not necessarily require the definition of an upper bound of synaptic weights because of its tendency to self-terminate once annihilation of bAPs has been reached. Our study provides a functional context in which one of the many time-dependent learning rules that have been observed experimentally - specifically, a learning rule with anti-Hebbian shape - is assigned a relevant role for inhibitory synapses. Moreover, the described mechanism is compatible with an upregulation of excitatory plasticity by disinhibition.


Subject(s)
Action Potentials/physiology , Models, Neurological , Neural Inhibition/physiology , Neuronal Plasticity/physiology , Neurons/physiology , Animals , Cerebral Cortex/cytology , Cerebral Cortex/physiology , Computer Simulation , Excitatory Postsynaptic Potentials/physiology , Neural Pathways/cytology , Neural Pathways/physiology , Neurons/cytology , Pyramidal Cells/physiology , Time Factors
13.
Curr Biol ; 26(21): R1141-R1143, 2016 11 07.
Article in English | MEDLINE | ID: mdl-27825449

ABSTRACT

Temperature influences physiological processes and can corrupt nervous system function. A modelling study shows how regulation of ion channel expression can establish an acute temperature invariance of neuronal responses despite temperature-dependent and variable ionic conductances.


Subject(s)
Ion Channels , Nervous System Physiological Phenomena , Homeostasis , Neurons , Temperature
14.
J Neurophysiol ; 114(3): 1424-37, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26041833

ABSTRACT

The neurophysiology of ectothermic animals, such as insects, is affected by environmental temperature, as their body temperature fluctuates with ambient conditions. Changes in temperature alter properties of neurons and, consequently, have an impact on the processing of information. Nevertheless, nervous system function is often maintained over a broad temperature range, exhibiting a surprising robustness to variations in temperature. A special problem arises for acoustically communicating insects, as in these animals mate recognition and mate localization typically rely on the decoding of fast amplitude modulations in calling and courtship songs. In the auditory periphery, however, temporal resolution is constrained by intrinsic neuronal noise. Such noise predominantly arises from the stochasticity of ion channel gating and potentially impairs the processing of sensory signals. On the basis of intracellular recordings of locust auditory neurons, we show that intrinsic neuronal variability on the level of spikes is reduced with increasing temperature. We use a detailed mathematical model including stochastic ion channel gating to shed light on the underlying biophysical mechanisms in auditory receptor neurons: because of a redistribution of channel-induced current noise toward higher frequencies and specifics of the temperature dependence of the membrane impedance, membrane potential noise is indeed reduced at higher temperatures. This finding holds under generic conditions and physiologically plausible assumptions on the temperature dependence of the channels' kinetics and peak conductances. We demonstrate that the identified mechanism also can explain the experimentally observed reduction of spike timing variability at higher temperatures.


Subject(s)
Action Potentials , Auditory Pathways/physiology , Hot Temperature , Sensory Receptor Cells/physiology , Analysis of Variance , Animals , Locusta migratoria , Models, Neurological , Signal-To-Noise Ratio
15.
Elife ; 3: e02078, 2014 May 08.
Article in English | MEDLINE | ID: mdl-24843016

ABSTRACT

Changes in temperature affect biochemical reaction rates and, consequently, neural processing. The nervous systems of poikilothermic animals must have evolved mechanisms enabling them to retain their functionality under varying temperatures. Auditory receptor neurons of grasshoppers respond to sound in a surprisingly temperature-compensated manner: firing rates depend moderately on temperature, with average Q10 values around 1.5. Analysis of conductance-based neuron models reveals that temperature compensation of spike generation can be achieved solely relying on cell-intrinsic processes and despite a strong dependence of ion conductances on temperature. Remarkably, this type of temperature compensation need not come at an additional metabolic cost of spike generation. Firing rate-based information transfer is likely to increase with temperature and we derive predictions for an optimal temperature dependence of the tympanal transduction process fostering temperature compensation. The example of auditory receptor neurons demonstrates how neurons may exploit single-cell mechanisms to cope with multiple constraints in parallel.DOI: http://dx.doi.org/10.7554/eLife.02078.001.


Subject(s)
Sensory Receptor Cells/physiology , Temperature , Acoustic Stimulation , Action Potentials , Animals , Grasshoppers , Models, Biological
16.
IEEE Trans Neural Netw ; 22(9): 1419-34, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21791409

ABSTRACT

It has been proven that there are synchrony (or phase-locking) phenomena present in multiple oscillating systems such as electrical circuits, lasers, chemical reactions, and human neurons. If the measurements of these systems cannot detect the individual oscillators but rather a superposition of them, as in brain electrophysiological signals (electro- and magneoencephalogram), spurious phase locking will be detected. Current source-extraction techniques attempt to undo this superposition by assuming properties on the data, which are not valid when underlying sources are phase-locked. Statistical independence of the sources is one such invalid assumption, as phase-locked sources are dependent. In this paper, we introduce methods for source separation and clustering which make adequate assumptions for data where synchrony is present, and show with simulated data that they perform well even in cases where independent component analysis and other well-known source-separation methods fail. The results in this paper provide a proof of concept that synchrony-based techniques are useful for low-noise applications.


Subject(s)
Brain/cytology , Models, Neurological , Neurons/physiology , Signal Processing, Computer-Assisted , Algorithms , Brain Mapping , Cluster Analysis , Computer Simulation , Fourier Analysis , Humans , Oscillometry
17.
Phys Rev Lett ; 103(24): 248105, 2009 Dec 11.
Article in English | MEDLINE | ID: mdl-20366234

ABSTRACT

Starting from a general description of noisy limit cycle oscillators, we derive from the Fokker-Planck equations the linear response of the instantaneous oscillator frequency to a time-varying external force. We consider the time series of zero crossings of the oscillator's phase and compute the mutual information between it and the driving force. A direct link is established between the phase response curve summarizing the oscillator dynamics and the ability of a limit cycle oscillator, such as a heart cell or neuron, to encode information in the timing of peaks in the oscillation.


Subject(s)
Oscillometry/instrumentation , Animals , Neurons/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...