Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Commun Chem ; 6(1): 113, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37286703

ABSTRACT

It is of general interest to combine the faradaic processes based high energy density of a battery with the non-faradaic processes based high power density of a capacitor in one cell. Surface area and functional groups of electrode materials strongly affect these properties. For the anode material Li4Ti5O12 (LTO), we suggest a polaron based mechanism that influences Li ion uptake and mobility. Here we show electrolytes containing a lithium salt induce an observable change in the bulk NMR relaxation properties of LTO nano particles. The longitudinal 7Li NMR relaxation time of bulk LTO can change by almost an order of magnitude and, therefore, reacts very sensitively to the cation and its concentration in the surrounding electrolyte. The reversible effect is largely independent of the used anions and of potential anion decomposition products. It is concluded that lithium salt containing electrolytes increase the mobility of surface polarons. These polarons and additional lithium cations from the electrolyte can now diffuse through the bulk, induce the observed enhanced relaxation rate and enable the non-faradaic process. This picture of a Li+ ion equilibrium between electrolyte and solid may help with improving the charging properties of electrode materials.

2.
Magn Reson (Gott) ; 2(1): 265-280, 2021.
Article in English | MEDLINE | ID: mdl-37904775

ABSTRACT

In operando nuclear magnetic resonance (NMR) spectroscopy is one method for the online investigation of electrochemical systems and reactions. It allows for real-time observations of the formation of products and intermediates, and it grants insights into the interactions of substrates and catalysts. An in operando NMR setup for the investigation of the electrolytic reduction of CO2 at silver electrodes has been developed. The electrolysis cell consists of a three-electrode setup using a working electrode of pristine silver, a chlorinated silver wire as the reference electrode, and a graphite counter electrode. The setup can be adjusted for the use of different electrode materials and fits inside a 5 mm NMR tube. Additionally, a shielding setup was employed to minimize noise caused by interference of external radio frequency (RF) waves with the conductive components of the setup. The electrochemical performance of the in operando electrolysis setup is compared with a standard CO2 electrolysis cell. The small cell geometry impedes the release of gaseous products, and thus it is primarily suited for current densities below 1 mA cm-2. The effect of conductive components on 13C NMR experiments was studied using a CO2-saturated solution of aqueous bicarbonate electrolyte. Despite the B0 field distortions caused by the electrodes, a proper shimming could be attained, and line widths of ca. 1 Hz were achieved. This enables investigations in the sub-Hertz range by NMR spectroscopy. High-resolution 13C NMR and relaxation time measurements proved to be sensitive to changes in the sample. It was found that the dynamics of the bicarbonate electrolyte varies not only due to interactions with the silver electrode, which leads to the formation of an electrical double layer and catalyzes the exchange reaction between CO2 and HCO3-, but also due to interactions with the electrochemical setup. This highlights the necessity of a step-by-step experiment design for a mechanistic understanding of processes occurring during electrochemical CO2 reduction.

3.
Angew Chem Int Ed Engl ; 60(6): 3299-3306, 2021 Feb 08.
Article in English | MEDLINE | ID: mdl-33151593

ABSTRACT

The recent mechanistic understanding of active sites, adsorbed intermediate products, and rate-determining steps (RDS) of nitrogen (N)-modified carbon catalysts in electrocatalytic oxygen reduction (ORR) and oxygen evolution reaction (OER) are still rife with controversy because of the inevitable coexistence of diverse N configurations and the technical limitations for the observation of formed intermediates. Herein, seven kinds of aromatic molecules with designated single N species are used as model structures to investigate the explicit role of each common N group in both ORR and OER. Specifically, dynamic evolution of active sites and key adsorbed intermediate products including O2 (ads), superoxide anion O2 - *, and OOH* are monitored with in situ spectroscopy. We propose that the formation of *OOH species from O2 - * (O2 - *+H2 O→OOH*+OH- ) is a possible RDS during the ORR process, whereas the generation of O2 from OOH* species is the most likely RDS during the OER process.

4.
J Magn Reson ; 312: 106688, 2020 03.
Article in English | MEDLINE | ID: mdl-32004819

ABSTRACT

In a typical magic-angle spinning (MAS) dynamic nuclear polarization (DNP) nuclear magnetic resonance (NMR) experiment, several mechanisms are simultaneously involved when transferring much larger polarization of electron spins to NMR active nuclei of interest. Recently, specific cross-relaxation enhancement by active motions under DNP (SCREAM-DNP) [Daube et al. JACS 2016] has been reported as one of these mechanisms. Thereby 13C enhancement with inverted sign was observed in a direct polarization (DP) MAS DNP experiment, caused by reorientation dynamics of methyl that was not frozen out at 100 K. Here, we report on the spontaneous polarization transfer from hyperpolarized 1H to both primary amine and ammonium nitrogens, resulting in an additional positive signal enhancement in the 15N NMR spectra during 15N DP-MAS DNP. The cross-relaxation induced signal enhancement (CRE) for 15N is of opposite sign compared to that observed for 13C due to the negative sign of the gyromagnetic ratio of 15N. The influence on CRE efficiency caused by variation of the radical solution composition and by temperature was also investigated.

5.
Chemphyschem ; 19(20): 2614-2620, 2018 10 19.
Article in English | MEDLINE | ID: mdl-30059190

ABSTRACT

Hyperpolarization with parahydrogen (p-H2 ) is a fast developing field in NMR, which enables overcoming the inherent low sensitivity of this important technique. The hyperpolarization of solvents, particularly of water, offers a wide range of applications for structural investigations of macromolecules and biomedical imaging. Until lately, only organic solvents could be polarized by means of parahydrogen via coherent redistribution of polarization (SABRE mechanism). In this study, we investigate in detail the mechanism of the recently reported bulk water hyperpolarization with a combination of theoretical and experimental methods, finally showing a chemical exchange pathway of single protons as basis for the enhancement. The prerequisites for preserving hyperpolarization upon separation of the two hydrogen atoms of p-H2 are demonstrated by theoretical examinations of the boundary conditions for the hyperpolarization experiments in accordance with the OneH-PHIP theory. These findings yielded the proposal of the novel NEPTUN mechanism (Nuclear Exchange Polarization by Transposing Unattached Nuclei) as the non-hydrogenative equivalent to the established OneH-PHIP and thus the missing link in parahydrogen hyperpolarization theory.

6.
Chemphyschem ; 18(18): 2426-2429, 2017 Sep 20.
Article in English | MEDLINE | ID: mdl-28682000

ABSTRACT

Studies of water-based systems are of fundamental interest for nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) as water is the most abundant and important medium for global living. Hence, increasing the polarization of water and dissolved compounds is particularly attractive for biomedical applications such as investigations of intermolecular interactions and metabolite structures as well as for imaging purposes. In this work, we show a new approach based on para enriched hydrogen (p-H2 ) that enables the hyperpolarization of bulk water if a suitable catalytic system is employed. The results indicate that the polarization is transferred by a new exchange mechanism.

7.
Angew Chem Int Ed Engl ; 54(8): 2452-6, 2015 Feb 16.
Article in English | MEDLINE | ID: mdl-25565403

ABSTRACT

Para-hydrogen-induced polarization (PHIP) is a technique capable of producing spin polarization at a magnitude far greater than state-of-the-art magnets. A significant application of PHIP is to generate contrast agents for biomedical imaging. Clinically viable and effective contrast agents not only require high levels of polarization but heterogeneous catalysts that can be used in water to eliminate the toxicity impact. Herein, we demonstrate the use of Pt nanoparticles capped with glutathione to induce heterogeneous PHIP in water. The ligand-inhibited surface diffusion on the nanoparticles resulted in a (1) H polarization of P=0.25% for hydroxyethyl propionate, a known contrast agent for magnetic resonance angiography. Transferring the (1) H polarization to a (13) C nucleus using a para-hydrogen polarizer yielded a polarization of 0.013%. The nuclear-spin polarizations achieved in these experiments are the first reported to date involving heterogeneous reactions in water.


Subject(s)
Hydrogen/chemistry , Nanoparticles/chemistry , Water/chemistry , Catalysis , Magnetic Resonance Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...