Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 29(57): e202301337, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37419861

ABSTRACT

Organic solar cells have been continuously studied and developed through the last decades. A major step in their development was the introduction of fused-ring non-fullerene electron acceptors. Yet, beside their high efficiency, they suffer from complex synthesis and stability issues. Perylene-based non-fullerene acceptors, in contrast, can be prepared in only a few steps and display good photochemical and thermal stability. Herein, we introduce four monomeric perylene diimide acceptors obtained in a three-step synthesis. In these molecules, the semimetals silicon and germanium were added in the bay position, on one or both sides of the molecules, resulting in asymmetric and symmetric compounds with a red-shifted absorption compared to unsubstituted perylene diimide. Introducing two germanium atoms improved the crystallinity and charge carrier mobility in the blend with the conjugated polymer PM6. In addition, charge carrier separation is significantly influenced by the high crystallinity of this blend, as shown by transient absorption spectroscopy. As a result, the solar cells reached a power conversion efficiency of 5.38 %, which is one of the highest efficiencies of monomeric perylene diimide-based solar cells recorded to date.

2.
J Chromatogr A ; 1216(13): 2664-70, 2009 Mar 27.
Article in English | MEDLINE | ID: mdl-18809181

ABSTRACT

Monolithic capillary columns were prepared via electron beam triggered free radical polymerization within the confines of 0.2 and 0.1mm I.D. capillary columns using ethyl methacrylate and trimethylolpropane triacrylate as monomers as well as 2-propanol, 1-dodecanol and toluene as porogenic system. The influence of column diameter on reproducibility and separation performance was investigated. For evaluation, a protein standard consisting of five proteins in the range of 5800-66,000 g mol(-1) was used. Reproducibility was checked by determining the relative standard deviations in retention times, peak widths at half height, asymmetry and resolution. Excellent run-to-run reproducibility was found for both 0.2 and 0.1mm I.D. columns; batch-to-batch reproducibility was good for both column types. In order to enhance the non-polar character of the monolithic columns, lauryl methacrylate-based capillary columns were prepared. These were successfully used for the separation of proteins and a cytochrome c digest.


Subject(s)
Chromatography, High Pressure Liquid , Electrons , Free Radicals/chemistry , Polymers/chemical synthesis , 2-Propanol/chemistry , Acrylates/chemistry , Dodecanol/chemistry , Methacrylates/chemistry , Proteins/isolation & purification , Reproducibility of Results
4.
J Chromatogr A ; 1132(1-2): 124-31, 2006 Nov 03.
Article in English | MEDLINE | ID: mdl-16934281

ABSTRACT

Monolithic columns for capillary HPLC were prepared via ring-opening metathesis polymerization (ROMP) from cis-cyclooctene (COE), tris(cyclooct-4-enyl-1-oxy)methylsilane (CL) as monomers, 2-propanol and toluene as porogens and RuCl(2)(Py)(2)(IMesH(2))(CHC(6)H(5)) (Py=pyridine, IMesH(2)=1,3-dimesityl-4,5-dihydroimidazolin-2-ylidene) as initiator within the confines of 200 microm i.d. fused silica columns. For evaluation of the novel monolithic capillary HPLC columns, a protein standard consisting of six proteins in the molecular weight range of 5800-66000 g/mol, i.e. ribonuclease A, insulin, albumin, lysozyme, myoglobin and beta-lactoglobulin, was used. Reproducibility of synthesis was checked by determining the relative standard deviation (RSD) in retention times (t(R)), which was found to be in the range of 2.9-3.9% for all analytes. Variations in polymer kinetics were realized by adding different amounts of free pyridine and had a significant influence on the monolith's morphology, the backpressure and retention times. On the contrary, variations in monomer content and COE to CL ratio showed only minor changes on these parameters. Long-term stability of 1000 runs at 50 degrees C showed excellent stability of the columns and no significant alteration in separation performance was observed in combination with slightly decreased retention times (approx. 1.6-7.2% for all analytes).


Subject(s)
Chromatography, High Pressure Liquid/instrumentation , Chromatography, High Pressure Liquid/methods , Heptanes/chemistry , Naphthalenes/chemistry , Polymers/chemical synthesis , Drug Stability , Microscopy, Electron/methods , Molecular Structure , Polymers/chemistry , Porosity , Proteins/analysis , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...