Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 33(42)2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34280897

ABSTRACT

Yb- and Ce-based delafossites were recently identified as effective spin-1/2 antiferromagnets on the triangular lattice. Several Yb-based systems, such as NaYbO2, NaYbS2, and NaYbSe2, exhibit no long-range order down to the lowest measured temperatures and therefore serve as putative candidates for the realization of a quantum spin liquid. However, their isostructural Ce-based counterpart KCeS2exhibits magnetic order belowTN= 400 mK, which was so far identified only in thermodynamic measurements. Here we reveal the magnetic structure of this long-range ordered phase using magnetic neutron diffraction. We show that it represents the so-called 'stripe-yz' type of antiferromagnetic order with spins lying approximately in the triangular-lattice planes orthogonal to the nearest-neighbor Ce-Ce bonds. No structural lattice distortions are revealed belowTN, indicating that the triangular lattice of Ce3+ions remains geometrically perfect down to the lowest temperatures. We propose an effective Hamiltonian for KCeS2, based on a fit to the results ofab initiocalculations, and demonstrate that its magnetic ground state matches the experimental spin structure.

2.
J Phys Condens Matter ; 31(20): 205601, 2019 May 22.
Article in English | MEDLINE | ID: mdl-30763924

ABSTRACT

The delafossite structure of NaYbS2 contains a planar spin-1/2 triangular lattice of Yb3+ ions and features a possible realisation of a quantum spin-liquid state. We investigated the Yb3+ spin dynamics by electron spin resonance (ESR) in single-crystalline samples of NaYbS2. Very clear spectra with a well-resolved and large anisotropy could be observed down to the lowest accessible temperature of 2.7 K. In contrast to the ESR properties of other known spin-liquid candidate systems, the resonance seen in NaYbS2 is accessible at low fields (<1 T) and is narrow enough for accurate characterisation of the relaxation rate as well as the g factor of the Yb3+ spins.

SELECTION OF CITATIONS
SEARCH DETAIL
...