Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 3344, 2017 06 13.
Article in English | MEDLINE | ID: mdl-28611368

ABSTRACT

Up to now, the thermal expansion behavior of multiphase glass-ceramics cannot be predicted reliably because of the nescience about the formation of the type and concentration of crystalline phases. In the system BaO-SrO-ZnO-SiO2, recently a new phase based on Ba1-xSrxZn2Si2O7 solid solutions was found, which exhibits unexpected low and highly anisotropic thermal expansion, which can be used for an adjustment of the thermal expansion properties. In the case of sealing materials for high-temperature reactors, the formation of this phase should be avoided. Hence, in this manuscript the concentration thresholds in which these solid solutions precipitate from glasses were determined. The phase analysis was correlated with the thermal expansion behavior of the glass-ceramics. Depending on the Ba/Sr-ratio of the glasses and the considered temperature range, the coefficients of thermal expansion of the glass-ceramics vary between 19.4·10-6 K-1 and 4.8·10-6 K-1. The concentration thresholds in which the as mentioned phases form via crystallization of glasses differ strongly from the literature values obtained via conventional ceramic mixed oxide route.

2.
ACS Appl Mater Interfaces ; 8(31): 20212-9, 2016 Aug 10.
Article in English | MEDLINE | ID: mdl-27433854

ABSTRACT

The thermal expansion behavior of sintered glass-ceramics containing high concentrations of Ba1-xSrxZn2Si2O7, a phase with very low and highly anisotropic thermal expansion behavior, was investigated. The observed phase has the crystal structure of the high-temperature phase of BaZn2Si2O7, which can be stabilized by the introduction of Sr(2+) into this phase. The high anisotropy leads to microcracking within the volume of the samples, which strongly affects the dilatometric thermal expansion. However, these cracks also have an influence on the nominal thermal expansion of the as-mentioned phase, which decreases if the cracks appear. Below a grain size of approximately 80 µm, the sintered glass-ceramics have almost no cracks and show positive thermal expansion. Hence, coefficients of thermal expansion between -5.6 and 6.5 × 10(-6) K(-1) were measured. In addition to dilatometric studies, the effect of the microstructure on the thermal expansion was also measured using in situ X-ray diffraction at temperatures up to 1000 °C.

SELECTION OF CITATIONS
SEARCH DETAIL
...