Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 96(21): 8441-8449, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38757174

ABSTRACT

Confocal micro-X-ray fluorescence (micro-XRF) spectroscopy facilitates three-dimensional (3D) elemental imaging of heterogeneous samples in the micrometer range. Laboratory setups using X-ray tube excitation render the method accessible for diverse research fields but interpretation of results and quantification remain challenging. The attenuation of X-rays in composites depends on the photon energy as well as on the composition and density of the material. For confocal micro-XRF, attenuation severely impacts elemental distribution information, as the signal from deeper layers is distorted by superficial layers. Absorption correction and quantification of fluorescence measurements in heterogeneous composite samples have so far not been reported. Here, an absorption correction approach for confocal micro-XRF combining density information from microcomputed tomography (micro-CT) data with laboratory X-ray absorption spectroscopy (XAS) and synchrotron transmission measurements is presented. The energy dependency of the probing volume is considered during the correction. The methodology is demonstrated on a model composite sample consisting of a bovine tooth with a clinically used restoration material.

2.
Adv Sci (Weinh) ; 10(28): e2302623, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37544912

ABSTRACT

Electrochemical nitrate reduction to ammonia powered by renewable electricity is not only a promising alternative to the established energy-intense and non-ecofriendly Haber-Bosch reaction for ammonia generation but also a future contributor to the ever-more important denitrification schemes. Nevertheless, this reaction is still impeded by the lack of understanding for the underlying reaction mechanism on the molecular scale which is necessary for the rational design of active, selective, and stable electrocatalysts. Herein, a novel single-site bismuth catalyst (Bi-N-C) for nitrate electroreduction is reported to produce ammonia with maximum Faradaic efficiency of 88.7% and at a high rate of 1.38 mg h-1 mgcat -1 at -0.35 V versus reversible hydrogen electrode (RHE). The active center (described as BiN2 C2 ) is uncovered by detailed structural analysis. Coupled density functional theory calculations are applied to analyze the reaction mechanism and potential rate-limiting steps for nitrate reduction based on the BiN2 C2 model. The findings highlight the importance of model catalysts to utilize the potential of nitrate reduction as a new-generation nitrogen-management technology based on the construction of efficient active sites.

3.
Inorg Chem ; 62(33): 13554-13565, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37555784

ABSTRACT

A group of (doped N or P) carbons were synthesized using soluble starch as a carbon precursor. Further, ceria nanoparticles (NPs) were confined into these (doped) carbon materials. The obtained solids were characterized by various techniques such as N2 physisorption, XRD, TEM, SEM, XPS, and XAS. These materials were used as catalysts for the oxidative coupling between benzyl alcohol and aniline as the model reaction. Ceria immobilized on mesoporous-doped carbon shows higher activity than the other materials, benchmark catalysts, and most of the previously reported catalysts. The control of the ceria NP size, the presence of Ce3+ cations, and an increment in the disorder in the ceria NP structure caused by a support-ceria interaction could increase the number of oxygen vacancies and improve its catalytic performance. CN-meso/CeO2 was also used as the catalyst for a rich scope of substrates, such as substituted aromatic alcohols, linear alcohols, and different types of amines. The influence of various reaction parameters (substrate content, reaction temperature, and catalyst content) on the activity of this catalyst was also checked.

4.
Int J Mol Sci ; 23(9)2022 Apr 23.
Article in English | MEDLINE | ID: mdl-35563064

ABSTRACT

Trace elements, functionalized nanoparticles and labeled entities can be localized with sub-mm spatial resolution by X-ray fluorescence imaging (XFI). Here, small animals are raster scanned with a pencil-like synchrotron beam of high energy and low divergence and the X-ray fluorescence is recorded with an energy-dispersive detector. The ability to first perform coarse scans to identify regions of interest, followed by a close-up with a sub-mm X-ray beam is desirable, because overall measurement time and X-ray dose absorbed by the (biological) specimen can thus be minimized. However, the size of X-ray beams at synchrotron beamlines is usually strongly dependent on the actual beamline setup and can only be adapted within specific pre-defined limits. Especially, large synchrotron beams are non-trivial to generate. Here, we present the concept of graphite-based, convex reflection optics for the one-dimensional enlargement of a 1 mm wide synchrotron beam by a factor of 5 to 10 within a 1 m distance. Four different optics are tested and characterized and their reflection properties compared to ray tracing simulations. The general shape and size of the measured reflection profiles agree with expectations. Enhancements with respect to homogeneity and efficiency can be expected with improved optics manufacturing. A mouse phantom is used for a proof-of-principle XFI experiment demonstrating the applicability of coarse and fine scans with the suggested optics design.


Subject(s)
Optics and Photonics , Synchrotrons , Animals , Mice , Optical Imaging , Phantoms, Imaging , X-Rays
5.
Angew Chem Int Ed Engl ; 58(46): 16569-16574, 2019 Nov 11.
Article in English | MEDLINE | ID: mdl-31483557

ABSTRACT

For the first time, the manganese gallide (MnGa4 ) served as an intermetallic precursor, which upon in situ electroconversion in alkaline media produced high-performance and long-term-stable MnOx -based electrocatalysts for water oxidation. Unexpectedly, its electrocorrosion (with the concomitant loss of Ga) leads simultaneously to three crystalline types of MnOx minerals with distinct structures and induced defects: birnessite δ-MnO2 , feitknechtite ß-MnOOH, and hausmannite α-Mn3 O4 . The abundance and intrinsic stabilization of MnIII /MnIV active sites in the three MnOx phases explains the superior efficiency and durability of the system for electrocatalytic water oxidation. After electrophoretic deposition of the MnGa4 precursor on conductive nickel foam (NF), a low overpotential of 291 mV, comparable to that of precious-metal-based catalysts, could be achieved at a current density of 10 mA cm-2 with a durability of more than five days.

6.
J Am Chem Soc ; 141(16): 6623-6630, 2019 Apr 24.
Article in English | MEDLINE | ID: mdl-30916950

ABSTRACT

Covalent organic frameworks (COFs) are of interest for many applications originating from their mechanically robust architectures, low density, and high accessible surface area. Depending on their linkers and binding patterns, COFs mainly exhibit microporosity, even though COFs with small mesopores have been reported using extended linkers. For some applications, especially when fast mass transport is desired, hierarchical pore structures are an ideal solution, e.g., with small micropores providing large surface areas and larger macropores providing unhindered transport to and from the materials surface. Herein, we have developed a facile strategy for the fabrication of crystalline COFs with inherent microporosity and template-induced, homogeneously distributed, yet tunable, macroporous structures. This method has been successfully applied to obtain various ß-ketoenamine-based COFs with interconnected macro-microporous structures. The as-synthesized macroporous COFs preserve high crystallinity with high specific surface area. When bipyridine moieties are introduced into the COF backbone, metals such as Co2+ can be coordinated within the hierarchical pore structure (macro-TpBpy-Co). The resulting macro-TpBpy-Co exhibits a high oxygen evolution reaction (OER) activity, which is much improved compared to the purely microporous COF with a competitive overpotential of 380 mV at 10 mA/cm2. This can be attributed to the improved mass diffusion properties in the hierarchically porous COF structures, together with the easily accessible active Co2+-bipyridine sites.

7.
Rev Sci Instrum ; 89(11): 113111, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30501328

ABSTRACT

We have built a laboratory spectrometer for X-ray emission spectroscopy. The instrument is employed in catalysis research. The key component is a von Hamos full cylinder optic with Highly Annealed Pyrolytic Graphite (HAPG) as a dispersive element. With this very efficient optic, the spectrometer subtends an effective solid angle of detection of around 1 msr, allowing for the analysis of dilute samples. The resolving power of the spectrometer is approximately E/ΔE = 4000, with an energy range of ∼2.3 keV-10 keV. The instrument and its characteristics are described herein. Further, a comparison with a prototype spectrometer, based on the same principle, shows the substantial improvement in the spectral resolution and energy range for the present setup. The paper concludes with a discussion of sample handling. A compilation of HAPG fundamentals and related publications are given in a brief Appendix.

8.
Faraday Discuss ; 208(0): 207-225, 2018 09 03.
Article in English | MEDLINE | ID: mdl-29809207

ABSTRACT

The mutual interaction between Rh nanoparticles and manganese/iron oxide promoters in silica-supported Rh catalysts for the hydrogenation of CO to higher alcohols was analyzed by applying a combination of integral techniques including temperature-programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS) and Fourier transform infrared (FTIR) spectroscopy with local analysis by using high angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) in combination with energy dispersive X-ray spectroscopy (EDX). The promoted catalysts show reduced CO adsorption capacity as evidenced through FTIR spectroscopy, which is attributed to a perforated core-shell structure of the Rh nano-particles in accordance with the microstructural analysis from electron microscopy. Iron and manganese occur in low formal oxidation states between 2+ and zero in the reduced catalysts as shown by using TPR and XAS. Infrared spectroscopy measured in diffuse reflectance at reaction temperature and pressure indicates that partial coverage of the Rh particles is maintained at reaction temperature under operation and that the remaining accessible metal adsorption sites might be catalytically less relevant because the hydrogenation of adsorbed carbonyl species at 523 K and 30 bar hydrogen essentially failed. It is concluded that Rh0 is poisoned due to the adsorption of CO under the reaction conditions of CO hydrogenation. The active sites are associated either with a (Mn,Fe)Ox (x < 0.25) phase or species at the interface between Rh and its co-catalyst (Mn,Fe)Ox.

9.
Rev Sci Instrum ; 85(5): 053110, 2014 May.
Article in English | MEDLINE | ID: mdl-24880356

ABSTRACT

We present a novel, highly efficient von Hamos spectrometer for X-ray emission spectroscopy (XES) in the laboratory using highly annealed pyrolitic graphite crystals as the dispersive element. The spectrometer covers an energy range from 2.5 keV to 15 keV giving access to chemical speciation and information about the electronic configuration of 3d transition metals by means of the Kß multiplet. XES spectra of Ti compounds are presented to demonstrate the speciation capabilities of the instrument. A spectral resolving power of E/ΔE = 2000 at 8 keV was achieved. Typical acquisition times range from 10 min for bulk material to hours for thin samples below 1 µm.

SELECTION OF CITATIONS
SEARCH DETAIL
...