Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(20): e2401398121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38728227

ABSTRACT

Decomposition of dead organic matter is fundamental to carbon (C) and nutrient cycling in terrestrial ecosystems, influencing C fluxes from the biosphere to the atmosphere. Theory predicts and evidence strongly supports that the availability of nitrogen (N) limits litter decomposition. Positive relationships between substrate N concentrations and decomposition have been embedded into ecosystem models. This decomposition paradigm, however, relies on data mostly from short-term studies analyzing controls on early-stage decomposition. We present evidence from three independent long-term decomposition investigations demonstrating that the positive N-decomposition relationship is reversed and becomes negative during later stages of decomposition. First, in a 10-y decomposition experiment across 62 woody species in a temperate forest, leaf litter with higher N concentrations exhibited faster initial decomposition rates but ended up a larger recalcitrant fraction decomposing at a near-zero rate. Second, in a 5-y N-enrichment experiment of two tree species, leaves with experimentally enriched N concentrations had faster decomposition initial rates but ultimately accumulated large slowly decomposing fractions. Measures of amino sugars on harvested litter in two experiments indicated that greater accumulation of microbial residues in N-rich substrates likely contributed to larger slowly decomposing fractions. Finally, a database of 437 measurements from 120 species in 45 boreal and temperate forest sites confirmed that higher N concentrations were associated with a larger slowly decomposing fraction. These results challenge the current treatment of interactions between N and decomposition in many ecosystems and Earth system models and suggest that even the best-supported short-term controls of biogeochemical processes might not predict long-term controls.


Subject(s)
Forests , Nitrogen , Plant Leaves , Trees , Nitrogen/metabolism , Nitrogen/chemistry , Plant Leaves/chemistry , Plant Leaves/metabolism , Trees/metabolism , Carbon/metabolism , Carbon/chemistry , Ecosystem , Taiga , Carbon Cycle
2.
Proc Natl Acad Sci U S A ; 121(13): e2318382121, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38502702

ABSTRACT

The huge carbon stock in humus layers of the boreal forest plays a critical role in the global carbon cycle. However, there remains uncertainty about the factors that regulate below-ground carbon sequestration in this region. Notably, based on evidence from two independent but complementary methods, we identified that exchangeable manganese is a critical factor regulating carbon accumulation in boreal forests across both regional scales and the entire boreal latitudinal range. Moreover, in a novel fertilization experiment, manganese addition reduced soil carbon stocks, but only after 4 y of additions. Our results highlight an underappreciated mechanism influencing the humus carbon pool of boreal forests.


Subject(s)
Manganese , Taiga , Carbon , Soil , Carbon Sequestration , Forests
4.
Environ Sci Technol ; 57(33): 12259-12269, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37556313

ABSTRACT

Despite extensive research and technology to reduce the atmospheric emission of Pb from burning coal for power generation, minimal attention has been paid to Pb associated with coal ash disposal in the environment. This study investigates the isotopic signatures and output rates of Pb in fly ash disposal in China, India, and the United States. Pairwise comparison between feed coal and fly ash samples collected from coal-fired power plants from each country shows that the Pb isotope composition of fly ash largely resembles that of feed coal, and its isotopic distinction allows for tracing the release of Pb from coal fly ash into the environment. Between 2000 and 2020, approx. 236, 56, and 46 Gg Pb from fly ash have been disposed in China, India, and the U.S., respectively, posing a significant environmental burden. A Bayesian Pb isotope mixing model shows that during the past 40 to 70 years, coal fly ash has contributed significantly higher Pb (∼26%) than leaded gasoline (∼7%) to Pb accumulation in the sediments of five freshwater lakes in North Carolina, U.S.A. This implies that the release of disposed coal fly ash Pb at local and regional scales can outweigh that of other anthropogenic Pb sources.


Subject(s)
Coal Ash , Coal , United States , Coal/analysis , Bayes Theorem , Lead , Isotopes/analysis , China , Power Plants
5.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Article in English | MEDLINE | ID: mdl-34983867

ABSTRACT

Tree fecundity and recruitment have not yet been quantified at scales needed to anticipate biogeographic shifts in response to climate change. By separating their responses, this study shows coherence across species and communities, offering the strongest support to date that migration is in progress with regional limitations on rates. The southeastern continent emerges as a fecundity hotspot, but it is situated south of population centers where high seed production could contribute to poleward population spread. By contrast, seedling success is highest in the West and North, serving to partially offset limited seed production near poleward frontiers. The evidence of fecundity and recruitment control on tree migration can inform conservation planning for the expected long-term disequilibrium between climate and forest distribution.


Subject(s)
Climate Change , Trees/physiology , Ecosystem , Fertility/physiology , Geography , North America , Uncertainty
7.
Nat Commun ; 12(1): 1242, 2021 02 23.
Article in English | MEDLINE | ID: mdl-33623042

ABSTRACT

Indirect climate effects on tree fecundity that come through variation in size and growth (climate-condition interactions) are not currently part of models used to predict future forests. Trends in species abundances predicted from meta-analyses and species distribution models will be misleading if they depend on the conditions of individuals. Here we find from a synthesis of tree species in North America that climate-condition interactions dominate responses through two pathways, i) effects of growth that depend on climate, and ii) effects of climate that depend on tree size. Because tree fecundity first increases and then declines with size, climate change that stimulates growth promotes a shift of small trees to more fecund sizes, but the opposite can be true for large sizes. Change the depresses growth also affects fecundity. We find a biogeographic divide, with these interactions reducing fecundity in the West and increasing it in the East. Continental-scale responses of these forests are thus driven largely by indirect effects, recommending management for climate change that considers multiple demographic rates.


Subject(s)
Climate Change , Trees/physiology , Fertility/physiology , Geography , Models, Theoretical , North America , Seasons
8.
J Air Waste Manag Assoc ; 71(1): 102-114, 2021 01.
Article in English | MEDLINE | ID: mdl-33125305

ABSTRACT

Emissions of ammonia (NH3), oxides of nitrogen (NOx; NO +NO2), and nitrous oxide (N2O) from biomass burning were quantified on a global scale for 2001 to 2015. On average biomass burning emissions at a global scale over the period were as follows: 4.53 ± 0.51 Tg NH3 year-1, 14.65 ± 1.60 Tg NOx year-1, and 0.97 ± 0.11 Tg N2O year-1. Emissions were comparable to other emissions databases. Statistical regression models were developed to project NH3, NOx, and N2O emissions from biomass burning as a function of burn area. Two future climate scenarios (RCP 4.5 and RCP 8.5) were analyzed for 2050-2055 ("mid-century") and 2090-2095 ("end of century"). Under the assumptions made in this study, the results indicate emissions of all species are projected to increase under both the RCP 4.5 and RCP 8.5 climate scenarios. Implications: This manuscript quantifies emissions of NH3, NOx, and N2O on a global scale from biomass burning from 2001-2015 then creates regression models to predict emissions based on climate change. Because reactive nitrogen emissions have such an important role in the global nitrogen cycle, changes in these emissions could lead to a number of health and environmental impacts.


Subject(s)
Climate Change , Nitrous Oxide , Ammonia , Biomass , Nitrogen
9.
Proc Natl Acad Sci U S A ; 117(24): 13283-13293, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32482880

ABSTRACT

Free hydrogen (H2) is a basal energy source underlying chemosynthetic activity within igneous ocean crust. In an attempt to systematically account for all H2 within young oceanic lithosphere (<10 Ma) near the Mid-Ocean Ridge (MOR), we construct a box model of this environment. Within this control volume, we assess abiotic H2 sources (∼6 × 1012 mol H2/y) and sinks (∼4 × 1012 mol H2/y) and then attribute the net difference (∼2 × 1012 mol H2/y) to microbial consumption in order to balance the H2 budget. Despite poorly constrained details and large uncertainties, our analytical framework allows us to synthesize a vast body of pertinent but currently disparate information in order to propose an initial global estimate for microbial H2 consumption within young ocean crust that is tractable and can be iteratively improved upon as new data and studies become available. Our preliminary investigation suggests that microbes beneath the MOR may be consuming a sizeable portion (at least ∼30%) of all produced H2, supporting the widely held notion that subseafloor microbes voraciously consume H2 and play a fundamental role in the geochemistry of Earth's ocean-atmosphere system.

10.
Earths Future ; 7: 1-8, 2019.
Article in English | MEDLINE | ID: mdl-31501769

ABSTRACT

Nitrogen is a critical component of the economy, food security, and planetary health. Many of the world's sustainability targets hinge on global nitrogen solutions, which, in turn, contribute lasting benefits for: (i) world hunger; (ii) soil, air and water quality; (iii) climate change mitigation; and (iv) biodiversity conservation. Balancing the projected rise in agricultural nitrogen demands while achieving these 21st century ideals will require policies to coordinate solutions among technologies, consumer choice, and socioeconomic transformation.

12.
Glob Chang Biol ; 25(2): 386-389, 2019 02.
Article in English | MEDLINE | ID: mdl-30485613

ABSTRACT

Improved soil management is increasingly pursued to ensure food security for the world's rising global population, with the ancillary benefit of storing carbon in soils to lower the threat of climate change. While all increments to soil organic matter are laudable, we suggest caution in ascribing large, potential climate change mitigation to enhanced soil management. We find that the most promising techniques, including applications of biochar and enhanced silicate weathering, collectively are not likely to balance more than 5% of annual emissions of CO2 from fossil fuel combustion.


Subject(s)
Carbon Sequestration , Climate Change , Crop Production/methods , Greenhouse Gases/analysis , Soil/chemistry , Food Supply
13.
Sci Adv ; 4(11): eaat1869, 2018 11.
Article in English | MEDLINE | ID: mdl-30443593

ABSTRACT

Limiting climate warming to <2°C requires increased mitigation efforts, including land stewardship, whose potential in the United States is poorly understood. We quantified the potential of natural climate solutions (NCS)-21 conservation, restoration, and improved land management interventions on natural and agricultural lands-to increase carbon storage and avoid greenhouse gas emissions in the United States. We found a maximum potential of 1.2 (0.9 to 1.6) Pg CO2e year-1, the equivalent of 21% of current net annual emissions of the United States. At current carbon market prices (USD 10 per Mg CO2e), 299 Tg CO2e year-1 could be achieved. NCS would also provide air and water filtration, flood control, soil health, wildlife habitat, and climate resilience benefits.

15.
Science ; 359(6382): 1328-1329, 2018 Mar 23.
Article in English | MEDLINE | ID: mdl-29567691
17.
Proc Natl Acad Sci U S A ; 114(52): E11092-E11100, 2017 12 26.
Article in English | MEDLINE | ID: mdl-29229856

ABSTRACT

Synthesizing published data, we provide a quantitative summary of the global biogeochemical cycle of vanadium (V), including both human-derived and natural fluxes. Through mining of V ores (130 × 109 g V/y) and extraction and combustion of fossil fuels (600 × 109 g V/y), humans are the predominant force in the geochemical cycle of V at Earth's surface. Human emissions of V to the atmosphere are now likely to exceed background emissions by as much as a factor of 1.7, and, presumably, we have altered the deposition of V from the atmosphere by a similar amount. Excessive V in air and water has potential, but poorly documented, consequences for human health. Much of the atmospheric flux probably derives from emissions from the combustion of fossil fuels, but the magnitude of this flux depends on the type of fuel, with relatively low emissions from coal and higher contributions from heavy crude oils, tar sands bitumen, and petroleum coke. Increasing interest in petroleum derived from unconventional deposits is likely to lead to greater emissions of V to the atmosphere in the near future. Our analysis further suggests that the flux of V in rivers has been incremented by about 15% from human activities. Overall, the budget of dissolved V in the oceans is remarkably well balanced-with about 40 × 109 g V/y to 50 × 109 g V/y inputs and outputs, and a mean residence time for dissolved V in seawater of about 130,000 y with respect to inputs from rivers.


Subject(s)
Models, Biological , Vanadium/chemistry , Vanadium/metabolism , Humans , Vanadium/adverse effects
18.
Proc Natl Acad Sci U S A ; 114(44): 11645-11650, 2017 10 31.
Article in English | MEDLINE | ID: mdl-29078344

ABSTRACT

Better stewardship of land is needed to achieve the Paris Climate Agreement goal of holding warming to below 2 °C; however, confusion persists about the specific set of land stewardship options available and their mitigation potential. To address this, we identify and quantify "natural climate solutions" (NCS): 20 conservation, restoration, and improved land management actions that increase carbon storage and/or avoid greenhouse gas emissions across global forests, wetlands, grasslands, and agricultural lands. We find that the maximum potential of NCS-when constrained by food security, fiber security, and biodiversity conservation-is 23.8 petagrams of CO2 equivalent (PgCO2e) y-1 (95% CI 20.3-37.4). This is ≥30% higher than prior estimates, which did not include the full range of options and safeguards considered here. About half of this maximum (11.3 PgCO2e y-1) represents cost-effective climate mitigation, assuming the social cost of CO2 pollution is ≥100 USD MgCO2e-1 by 2030. Natural climate solutions can provide 37% of cost-effective CO2 mitigation needed through 2030 for a >66% chance of holding warming to below 2 °C. One-third of this cost-effective NCS mitigation can be delivered at or below 10 USD MgCO2-1 Most NCS actions-if effectively implemented-also offer water filtration, flood buffering, soil health, biodiversity habitat, and enhanced climate resilience. Work remains to better constrain uncertainty of NCS mitigation estimates. Nevertheless, existing knowledge reported here provides a robust basis for immediate global action to improve ecosystem stewardship as a major solution to climate change.

19.
Glob Chang Biol ; 23(1): 25-27, 2017 01.
Article in English | MEDLINE | ID: mdl-27135436

ABSTRACT

Recent field studies have reported anomalous CO2 uptake using eddy-covariance techniques in arid and semiarid ecosystems. The rates of CO2 uptake are incompatible with changes in situ of organic carbon pools. Here, I examine several potential mechanisms of abiotic CO2 uptake in arid and semiarid soils: atmospheric pressure pumping, carbonate dissolution, and percolation of soil water through the vadose zone. Each mechanism is deemed inadequate to explain the observations of the eddy-covariance systems, which must now be questioned for their accuracy in desert ecosystems.


Subject(s)
Carbon Sequestration , Desert Climate , Soil Microbiology , Carbon , Ecosystem , Soil
20.
Sci Rep ; 6: 25088, 2016 04 26.
Article in English | MEDLINE | ID: mdl-27114032

ABSTRACT

Soil nitrate is important for crop growth, but it can also leach to groundwater causing nitrate contamination, a threat to human health. Here, we report a significant accumulation of soil nitrate in Chinese semi-humid croplands based upon more than 7000 samples from 141 sites collected from 1994 to 2015. In the 0-4 meters depth of soil, total nitrate accumulation reaches 453 ± 39, 749 ± 75, 1191 ± 89, 1269 ± 114, 2155 ± 330 kg N ha(-1) on average in wheat, maize, open-field vegetables (OFV), solar plastic-roofed greenhouse vegetables (GHV) and orchard fields, respectively. Surprisingly, there is also a comparable amount of nitrate accumulated in the vadose-zone deeper than 4 meters. Over-use of N fertilizer (and/or manure) and a declining groundwater table are the major causes for this huge nitrate reservoir in the vadose-zone of semi-humid croplands, where the nitrate cannot be denitrified due to the presence of oxygen and lack of carbon sources. Future climatic change with more extreme rainfall events would increase the risk of accumulated nitrate moving downwards and threatening groundwater nitrate contamination.


Subject(s)
Crops, Agricultural/growth & development , Nitrates/analysis , Soil Pollutants/analysis , China , Environmental Monitoring , Groundwater , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...